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Accurately identifying the missense mutations is of great help to alleviate the loss of

protein function and structural changes, which might greatly reduce the risk of disease

for tumor suppressor genes (e.g., BRCA1 and PTEN). In this paper, we propose a hybrid

framework, called BertVS, that predicts the disease risk for the missense mutation of

proteins. Our framework is able to learn sequence representations from the protein

domain through pre-training BERT models, and also integrates with the hydrophilic

properties of amino acids to obtain the sequence representations of biochemical

characteristics. The concatenation of two learned representations are then sent to the

classifier to predict the missense mutations of protein sequences. Specifically, we use

the protein family database (Pfam) as a corpus to train the BERT model to learn the

contextual information of protein sequences, and our pre-training BERT model achieves

a value of 0.984 on accuracy in the masked language model prediction task. We conduct

extensive experiments on BRCA1 and PTEN datasets. With comparison to the baselines,

results show that BertVS achieves higher performance of 0.920 on AUROC and 0.915 on

AUPR in the functionally critical domain of the BRCA1 gene. Additionally, the extended

experiment on the ClinVar dataset can illustrate that gene variants with known clinical

significance can also be efficiently classified by our method. Therefore, BertVS can learn

the functional information of the protein sequences and effectively predict the disease

risk of variants with an uncertain clinical significance.

Keywords: BERT pre-training model, protein sequence, hydrophilicity, protein mutation, BRCA1 gene

1. INTRODUCTION

Function loss of the tumor suppressor gene BRCA1 (Chenevixtrench et al., 2006) results in the risk
of breast and ovarian cancer in women (Hall et al., 1990). The most common variants of uncertain
significance (VUSs) (Landrum et al., 2016) in the BRCA1 gene are single nucleotide variations
(SNVs), which may lead to missense substitutions of amino acid. Among 1,863 amino acids of the
BRCA1 gene, it is reported that 12,458 SNVs in these amino acids may potentially cause missense
substitutions, so that it will further affect protein function (Starita et al., 2018). Once the protein
function is affected by missense mutations, loss of BRCA1 activity results in the fact that cells fail
to repair the broken DNA. Thus, being able to predict the missense mutation in proteins is of
major significance to better understand the function of molecules and cells, and to reduce the risk
of disease.
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Traditionally, commonly used experimental methods,
including the multiplex HDR (homology-directed DNA repair)
reporter assay (Starita et al., 2018) and saturated gene editing
(Findlay et al., 2018), prefer to classify the BRCA1 gene variants
by measuring the function of HDR (Pierce et al., 1999). These
methods are limited to specific biological functions of the
corresponding genes. On the other hand, in silico methods for
variant classification require prior knowledge of genetic variants
such as refGene annotations (Pruitt et al., 2014), gnomAD (Lek
et al., 2016), while many variants (i.e., VUSs) cannot be classified
owing to the lack of prior knowledge. These experimental
methods are both expensive and time-consuming.

Data-driven machine learning approaches can complement
experimental methods and permit large-scale investigations (Jin
et al., 2019; Su et al., 2019a,b). Sequence-based and structure-based
methods are widely designed to learn the protein function and
to solve problems in related tasks (Wei et al., 2018, 2019; Lin
et al., 2019, 2020a). While structure-based methods are limited
due to the unavailable 3D structures of most known proteins.
Thus, protein engineering informatics provide better solutions
for learning protein sequences and model the relationship
between sequence and function (Romero and Arnold, 2009;
Packer and Liu, 2015). Meanwhile, with the available datasets
of protein sequences increasing exponentially (Alley et al.,
2019), much machine learning methods have been devoted to
learning from protein sequence (Zou et al., 2019). For example,
ProtVec (Asgari and Mofrad, 2015) learned the sub-sequence
representations from the raw protein sequences, and Doc2Vec
(Yang et al., 2018) is proposed to use the full length of the
protein sequence specifically for protein characteristic prediction.
These methods fail to learn universal representations for protein
sequences and have not been comprehensively collected for
protein informatics (e.g., structural information and other
relevant features). Additionally, a bidirectional LSTM (BiLSTM)
model is proposed to learn embedding of protein sequences
from structural informatics, by combining global structural
similarity with the paired residue contacts of proteins (Bepler
and Berger, 2019). Additionally, UniRep (Alley et al., 2019)
used a Multiplicative-LSTM model to learn semantically rich
representations from a massive protein sequence dataset. These
approaches are not able to capture a longer range of information
and is inefficient. More recently, pre-training language models
such as BERT (Devlin et al., 2018) have shown great success
in natural language processing (NLP), these models can learn
contextualized word embedding with a large amount of available
unlabeled text data and can achieve state-of-the-art performance
in many language understanding tasks. Intuitively, there is
potential in applying BERT to learn from protein sequences for
the prediction of missense mutations.

In this paper, we propose a novel framework named BertVS
(Bert for variant sequences classification) that predicts the
pathogenicity of gene mutations. In particular, our proposed
framework generally consists of three components. In the first
component, BERT is pre-trained in the protein domain sequence
from Pfam (Punta et al., 2000) with some preprocessing. In the
second component, the protein mutation sequences are jointly
represented by the pre-training BERT model and the amino

acid hydrophilicity encoder. Finally, the classifier is trained for
binary classification of protein mutation sequences in the last
component. To the best of our knowledge, this is the first
study to predict the missense mutation with a pre-training
contextual language model. Compared with existing sequence-
based models, our method achieves the best performance on two
datasets, without prior knowledge of genetic variants. Moreover,
we further perform experimental verification with clinical data
on the ClinVar dataset. Additionally, it also shows that BertVS
can be extended to almost all VUSs in the coding region.
More importantly, we can observe from a series of systematic
experiments that our predicted results are highly consistent with
the analysis of experimental reports and other functional results.

2. DATASETS

2.1. Gene Mutation Datasets
As we know, the BRCA1 gene has great influence on HDR, which
is critical for tumor suppression. Saturation genome editing
(SGE) (Findlay et al., 2018) is proposed to measure the functional
effects of 3,893 SNVs in BRCA1 and whether these SNVs have
been observed in humans. These verified SNVs are divided
into three categories, including functional, non-functional, and
the intermediate between them. In this paper, we focus on the
influence of SNVs in the coding region of BRCA1. Specifically,
we preprocess to exclude the specific SNVs that belong to
the intermediate category. After that, we obtain 1,823 SNVs
in BRCT which is a structural region with definite functional
significance in BRCA1 (see Supplementary Table 1). We regard
the corresponding protein sequence of 1,823 SNVs as sample
data. In this paper, we only consider two types of SNVs (i.e.,
functional and non-functional). In reality, they are also referred
to as benign and pathogenic mutations, respectively. We then use
1,823 mutation samples to train our proposed model. Among
them, we take 392 pathogenic mutations as positive samples
while the rest are benign mutations as negative samples. Further,
we adopt the augmentation method to add terminators as noise
to the sequences, due to the imbalance distribution of samples in
classification task.

2.2. Protein Sequence Database
The non-synonymous single nucleotide substitutions
(nsSNP) will result in the substitutions of amino acids,
which can change the function and structure of the
corresponding protein. Therefore, effectively exploring the
relationship between protein function and structure has
received much attention in recent years. Proteins can be
expressed in a 3D structure with complex information,
while these protein data are hardly available in most cases.
In this paper, we capture the contextual information of the
protein sequence using unsupervised learning. As a large protein
family database, Pfam (Punta et al., 2000) is selected as the corpus
for pre-training the BERT model. In particular, we downloaded
the FASTA files from Pfam and constructed a corpus with a
total of 16,382 sequences by a keyword (i.e., BRCA1) filtering
operation. We then preprocess each amino acid as a word and
each sequence as a sentence. Next, we build a 20-word dictionary
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where each alphabet represents the corresponding type of amino
acid. Table 1 shows the statistics of BRCA1-related domain data
from the Pfam dataset. The identification number and protein
family name are denoted by Accession and ID, respectively. For
example, PF00533 is the identification number of Accession, and
BRCT represents the name of the protein family.

3. METHODS

In this section, we first provide an overview of the proposed
BertVS (section 3.1). We then introduce the BERT pre-
trainingmodel for protein sequence representation and encoding
for amino acid hydrophilicity, respectively (sections 3.2–3.3).
Finally, we discuss the mutation sequence prediction with our
proposed model (section 3.4).

3.1. Overall of BertVS
Figure 1 shows the overview of BertVS. It takes the symbolic
sequences of the protein translated by DNA variant as the
input, and outputs the prediction type of mutation sequences.
Keep in mind that the central idea of BertVS is to consider
both representation of protein sequence and encoding of thee
hydrophilic property, by using a pre-training BERT model and
embedding technique to encode the amino acids to a distributed
representation. We therefore develop BertVS as a three-step
framework for mutation sequence prediction:

TABLE 1 | The statistics of BRCA1-related domain data from Pfam.

Accession ID Description

PF00533 BRCT BRCA1 C Terminus (BRCT) domain

PF14835 zf-RING_6 zf-RING of BARD1-type protein

PF06209 COBRA1 Cofactor of BRCA1 (COBRA1)

PF12820 BRCT_assoc Serine-rich domain associated with BRCT

1. Encoding symbolic tokens in protein domain sequences for
pre-training;

2. Encoding the protein mutation sequences as well as the amino
acids hydrophilicity;

3. Predicting the type of mutation sequences based on the
encodings of the protein sequences and the hydrophilicity of
amino acids.

Motivated by BERT (Devlin et al., 2018), in the first step

in particular, we encode the symbols in the sequence of
the protein to an embedding representation, using the BERT
pre-training model. The sequence is converted into a vector
through this step. In the second step, we extract features
from the protein sequence, by encoding the protein mutation
sequence and the hydrophilicity of amino acids. For protein
sequence embedding, we consider the context of amino acids
by protein mutation samples to fine-tune the BERT model.
For the hydrophilic property of amino acids, we represent the
unique biochemical properties using an encoder. As a result,
we obtain two latent representations for the protein sequence
containing the contextual information and the hydrophilic
property, respectively. To predict the type of mutation sequence,
in the third step BertVS inputs the concatenation of the two
latent representations to a multi-layer perception classifier, and
outputs a real value of mutation type. Next, we present the details
of our proposed method.

3.2. BERT Pre-training Model
As a well-known language model, BERT has shown state-
of-the-art performance in most natural language processing
tasks (Devlin et al., 2018). Recently, there has been an
increased interest in applying the BERT model to improve
results in bioinformatics related tasks. Intuitively, we use
a pre-training BERTBASE model to generate the embedding
for protein sequence representation learning. As a multi-
layer bidirectional Transformer encoder, the BERTBASE model
contains 12 Transformer blocks, 768 hidden units, and 12

FIGURE 1 | The overview of our proposed BertVS.
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self-attention heads. The attention function can be constructed
as follows:

Attention(Q,K,V) = Softmax(
QKT

√

dk
)V (1)

where Q, K, and V are defined as the matrix of queries, keys,
and values, respectively. dk is the dimension of queries and keys.
Instead of performing a single attention function, Multi-head
attention (Vaswani et al., 2017) linearly projects the queries, keys,
and values to dk, dk and dv dimensions, respectively. It can be
described as follows:

MultiHead(Q,K,V) = Concate(head1, ..., headh)W
O (2)

where headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ), h is the number

of linear projections, and W
Q
i ∈ ℜdmodel×dq , WK

i ∈ ℜdmodel×dk ,

WV
i ∈ ℜdmodel×dv and WO ∈ ℜhdv×dmodel are the projection

parameter matrices.
In general, we input the preprocessed protein sequences into

the model, and then it outputs the fixed embedding vector after
training. Specifically, we first construct a protein sequence corpus
from the Pfam dataset, and we then separate each amino acid by
space as a word and assign the corresponding index to create a
vocabulary. Furthermore, each protein sequence is separated by
blank lines as a paragraph. All processed protein sequences are
collected into a file as an input to the BERTmodel. Before the pre-
training, BERT will further automatically preprocess the input
data. After several epochs of training, the trained BERT model
can learn the protein sequence representation by mapping the
contextual information into the embedding vector. The output of
the BERT pre-training model is the protein sequence embedding.
Regardless of the input length of the protein sequence, we obtain
the embedding vector of a fixed dimension and set the dimension
to 768–equal to the hidden size of BERT.

3.3. Amino Acid Hydrophilicity Encoding
As an important property of amino acids, the hydrophilicity has a
significant effect on protein function (Tan et al., 2019; Yang et al.,
2019; Fu et al., 2020; Liu et al., 2020). For example, in c.5104-
c.5112 (NCBI, NM_007294.3), Y1703 and F1704 of BRCA1
variants were scored as non-functional missense SNVs due to
their hydrophobicity and internal position (Shiozaki et al., 2004;
Findlay et al., 2018). Therefore, we consider the hydrophobicity
of amino acids and integrate it into ourmodel, which has a critical
influence on the factor of variant function. Specifically, the amino
acid in protein sequences are encoded by the hydrophilic value
(Arias and Kyte, 1979). Table 2 shows the scale of hydropathical
value among amino acids. We can see from Table 2 that higher
positive values are more hydrophobic (e.g., Ile = 4.500), while
lower negative values are more hydrophilic (e.g., Arg=−4.500).
We then map each sequence to a distributed embedding, based
on the corresponding hydrophilic value of amino acid ai:

f :X(a1, ..., ai) → Hyx (3)

where f is a mapping function, X(·) is the amino acid
representation of the sequence a1, ..., ai, and Hyx is the
hydrophilic encoding matrix.

TABLE 2 | The scale of hydropathical value among amino acids.

Amino acid Hydropathicity value Amino acid Hydropathicity value

Ala 1.800 Leu 3.800

Arg −4.500 Lys −3.900

Asn −3.500 Met 1.900

Asp −3.500 Phe 2.800

Cys 2.500 Pro −1.600

Gln −3.500 Ser −0.800

Glu −3.500 Thr −0.700

Gly −0.400 Trp −0.900

His −3.200 Tyr −1.300

Ile 4.500 Val 4.200

A fixed-size matrix is required for input into the encoder
model, while the length of the protein sequence may vary.
One simple solution is to fix the length of the input sequence
in the dataset and to apply zero-paddings at the end of the
input sequences when it less than the fixed size. We set the
maximum length of the hydrophilicity vector to be the same
as the maximum sequence length of the BERT model. The
experimental results show that different sequence lengths have
no effect on our model, as illustrated in section 4.2.3.

3.4. MLP Classifier
In this study, we look at mutation sequence prediction as a
binary classification task by predicting the output value of the
classifier. With the representation learned from the previous
sections, we can integrate all the information from the protein
sequence representation and the encoding hydrophilic value to
predict the type of mutation sequence. In brief, we concatenate
all representations and feed them to a multi-layer perception
(Gardner and Dorling, 1998) to output the binary value. In
the first hidden layer of the MLP, we compute the non-linear
embedding of the sequence features extracted by BertVS:

hinput = σ (W1Concate(Bertx,Hyx)+ b1) (4)

where Bertx ∈ ℜdBERT×n and Hyx ∈ ℜdHy×n are the matrices
for the sequence representation of the BERT pre-training model
and the hydrophilic encoder, respectively. σ (·) stands for a
ReLU activation function over a single-layer neural network
that is parameterized by the weight W1 and is a bias term b1.
Furthermore, dBERT and dHy denote the dimension of the hidden
size of BERT and the maximum length of the hydrophilicity
vector, respectively. Given a set of mutation sequences and the
ground-truth values in the training dataset, we can use the binary
cross-entropy as the loss function as follows.

lprediction = −(ylogŷ)+ (1− y)log(1− ŷ) (5)

where ŷ is the predicted value, y is the ground-truth value, which
represents the actual label of type of mutation sequence (i.e.,
benign and pathogenic mutation).
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4. RESULTS

In this section, we first describe the experimental settings (section
4.1). Then, we compare our proposed method with state-of-the
art models (section 4.2.1). We also conducted more experiments
to analyze our model, including the classification performance
and ablation study (section 4.2.2) to investigate the effectiveness
of the main strategies adopted in this paper.

4.1. Experimental Settings
To evaluate the performance of BertVS in predicting themissense
mutation, we randomly divided samples into three subsets with
a ratio of 5/4/1, including fine-tuning, training, and testing
sets. Next, we split the equal proportion of samples from the
positive and negative samples as the test set, respectively. The
noise sequences are added into the training set. Positive samples
are labeled as 1 while negative samples are labeled as 0. The
training epoch is set to 300, the learning rate is 0.001, and
the weight-decay is empirically set to be 0.005 to prevent over-
fitting. We use common metrics to evaluate the performance of
our proposed method, including Accuracy, Recall, Precision, F1-
score, AUROC, and AUPR. Note that AUROC denotes the area
under Receiver operating characteristic (ROC) curve, and AUPR
represents the area under Precision-recall (PR) curve.

To prove the performance of BertVS1, we compared it with
state-of-the-art methods.

• BiLSTM: Bepler et al. (Bepler and Berger, 2019) learned
protein sequence embeddings using information from
structure. They trained a bidirectional long short-term
memory (BiLSTM) as the pre-training model. The language
model is pre-trained on the raw protein sequences in the Pfam
to predict the amino acid at each position of each protein,
given the previous amino acids and the following amino acids.

• UniRep: A Multiplicative-LSTM model learns statistical
representations of proteins from 24 million UniRef50
sequences (Suzek et al., 2007). Without structural or
evolutionary data, the unified representation (UniRep)
summarizes arbitrary protein sequences into fixed-length
vectors, which can approximate the fundamental protein
features (Alley et al., 2019).

• ProtVec: A protein sequence representation and feature
extraction method, which separates the sequences into sub-
sequences to train distributed representations. It trains the
embedding of sequences from Swiss-Prot through a Skip-gram
neural network (Asgari and Mofrad, 2015).

For the comparison with BiLSTM, wemodified the dimensions of
the input embedding layer to the size of our model, and BiLSTM
generates 21-dimension embeddings for each protein sequence.
We used UniRep on our dataset and generated an embedding size
of 1,900 for each protein sequence. Sequences with terminators
are represented by a zero vector. For ProtVec, we generated
the embedding of 300-dimensions for each sequence, and the
sequences with terminators were treated in the same way
as UniRep. The size of the hidden layer of the classifier is

1https://github.com/xzenglab/BertVS

determined by the output dimension of the above method.
The other parameter settings were kept the same as in the
original work.

For the pre-training model, we need to train our BERT
model from scratch. Our implementation utilizes the official
code released by Microsoft for BERT model initialization. The
maximum length of input sequence is set to 256, which results
in 4,096 words per iteration on the basis of production of the
maximum sequence length and the mini-batch size. Vocabulary
includes a terminator symbol in addition to 20 amino acid
abbreviations. It takes nearly 20 h for training with 20,000 rounds
on a GPU of NVIDIA GP102, and we generated the embedding
from the pre-training model of the amino acid sequence in the
structural region of BRCA1. The predefined ratio of mutation
data was used to fine-tune the model.

4.2. Experimental Results
4.2.1. Comparison With Other Methods
We conducted comparative experiments on 1,823 protein
mutation samples. By setting different thresholds, we obtained
the true positive rates (TPR) and false positive rates (FPR).
As shown in Figure 2, the receiver-operating characteristics
(ROC) curves were plotted by plotting TPR vs. FPR at
different thresholds, where the area under receiver operating
characteristics(AUROC) curve is used to evaluate the prediction
performance of the proposedmethods. From this observation, we
found that BertVS achieved a value of 0.920 on AUROC, which
significantly outperformed the value of UniRep (0.811). Figure 2
presents the Precision-Recall curves of different methods.
Compared with the state-of-the-art model, BertVS also obtained
superior performance (e.g., 23% improvement of AUPR).
Furthermore, Table 3 shows the metrics of Accuracy, Recall,
Precision, F1-score, AUROC, and AUPR of all comparison
models, respectively. Recall measured the proportion of true
positives recovered for the total number of them in the test
set, and Precision metric is the fraction of true positives in the
predictions. We found that BertVS achieved better results on
precision. This shows that the positives retrieved by BertVS are
all true positives. For a dataset with unbalanced positive and
negative samples, the metric of F1-score can better reflect the
prediction performance of the model. The Recall, Precision, and
F1-score are formulated as shown below:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1 =
2 ∗ Recall ∗ Precision

Recall+ Precision
(8)

Here, BertVS achieved at least 20.9% on the F1-score, a higher
performance than UniRep (the second-best method). Our model
and comparison methods are able to encode amino acids as
the vector representation of the protein mutation sequence.
The sequence representations obtained by different methods are
visualized to assess their quality. We used t-SE (t-distributed
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FIGURE 2 | Predictive performance of different methods on the BRCT dataset. Left: Receiver operating characteristic (ROC) curves of prediction results obtained by

applying BertVS and other comparison methods. Right: Precision-recall (PR) curves for BertVS and other methods. Note that BertVS1 means our model in

feature-based mode, while BertVS2 means our model without pre-training model.

TABLE 3 | The comparison results of all models on BRCA1 and PTEN datasets.

Model/ Dataset Accuracy AUROC AUPR Recall Precision F1-score

BiLSTM 0.826 0.808 0.638 0.500 0.625 0.556

UniRep 0.880 0.811 0.685 0.389 1.000 0.560

ProtVec 0.820 0.727 0.544 0.233 1.000 0.377

BertVS1 0.852 0.806 0.760 0.613 1.000 0.760

BertVS2 0.853 0.744 0.649 0.475 0.760 0.585

BertVS 0.857 0.920 0.915 0.625 1.000 0.769

Dataset

(ClinVar_BRCA1)

0.890 0.898 0.717 0.861 0.778 0.815

Dataset

(ClinVar_PTEN)

0.853 0.909 0.958 0.875 0.884 0.879

Stochastic Neighbor Embedding) for visualization, which is a
non-linear dimensionality reduction method that embeds similar
points in the high-dimensional space into points close in two
dimensions (Der Maaten and Hinton, 2008). The mutation
sequence representations of the testing set were obtained by
the trained models. The vector representation of each mutation
sequence is mapped to a node in Figure 3, and the red
node represents a benign mutation, and the blue represents a
pathogenic mutation. Figure 3 shows that our model successfully
performs the clustering of protein sequences in comparison to
other methods. The reason could be that (i) compared to other
methods, the corpus of BertVS is more targeted to the BRCA1
gene; and (ii) our model utilizes the biochemical properties of
amino acids, which can better predict the mutations.

4.2.2. Ablation Study
BertVS mainly contains two parts, that is, BERT for pre-
training and amino acid hydrophilicity encoding. To examine

the contribution of each component, we compared BertVS
with several combinations. We implemented variants of our
model, called BertVS1 and BertVS2. BertVS1 excludes the amino
acid hydrophilicity encoding component and uses only the
BERT pre-training model for classification. BertVS2 removes
the pre-training component and replaces the BERT model with
an embedding layer for sequence representation. The detailed
configurations of the variant models are shown in Table 4. In
the above experiments, the ratio of the training set to the test
set becomes 9/1 and other experimental settings are the same
as described in section 4.1. As shown in Table 3, we found that
BertVS outperforms other variants in all metrics. Compared with
BertVS1, which only considers the BERT pre-training model,
BertVS is 11.4% and 15.5% higher on the metrics of AUROC
and AUPR, respectively. This demonstrates that amino acid
hydrophilicity encoding is beneficial in improving the mutation
prediction performance. Moreover, BertVS achieves a AUROC
score of 0.920 with about 17.6% improvement compared to
BertVS2. The importance of the pre-training models is self-
evident. In summary, we consider that the BERT pre-training
model, combined with amino acid hydrophilicity encoding, can
effectively predict mutation categories.

4.2.3. Impact of the Maximum Length of the Input

Sequence
In this section, we discuss the impact of setting a hyper-parameter
on the model performance. The experiment is also performed on
1,823 protein mutation samples. Except for the specific hyper-
parameter discussed below, other parameters and experimental
settings are kept the same as in section 4.1.

In order to process the input sequences of different lengths,
we define the maximum length of the input sequence as L. We
investigated the influence of L by varying it from 256 to 1024
for experiments. In Figure 4, we observe that the experimental
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FIGURE 3 | The two-dimensional representation of the protein mutation sequences learned by the t-SNE method. The red node represents a benign mutation, and

the blue represents a pathogenic mutation.

TABLE 4 | The detailed description of the variants of our model.

Model Protein sequence representation

BertVS1 BERT

BertVS2 Embedding layer & Amino acid hydrophilic encoding

BertVS BERT & Amino acid hydrophilic encoding

FIGURE 4 | Results of BertVS with varying size of hyperparameter.

results are only a marginal improvement. To save computing
resources, we usually chose 256 as the maximum length of the
input sequence.

4.2.4. Performance of BertVS on the Clinical Dataset
Challenging and realistic scenarios are considered in our tests to
evaluate the prediction performance of BertVS.Table 5 shows the
variants that are predicted to be approximately pathogenic. We

used 1,823 SNVs to train the BertVS and to predict other BRCA1
variants from the ClinVar database. In ClinVar database, 21
“Pathogenic” and 61 “Benign” of the BRCA1 missense mutations
were selected, a total of 82 mutations as the test set. Conditions
of these mutations include Breast and ovarian cancer (Hall et al.,
1990), Hereditary cancer-predisposing syndrome (Frank, 2001),
and FANCONI ANEMIA (Gluckman, 1989). To cross-validate
clinical samples, we randomly divided the clinical data into two
parts, one of which is added to the training set while the other
is used as the test set. The prediction results on two-fold cross
validation are shown in Table 3. As shown in Figure 5, the
plot shows the predicted probability and location distribution of
BRCA1 mutations from ClinVar. We observed that most of the
pathogenic mutations distributes near the promoter of the gene.
Furthermore, we used BertVS to predict missense VUSs, which
are labeled “Likely benign” and “Likely pathogenic” from ClinVar
in the BRCA1 gene.

In addition to the variants of the BRCA1 gene, we also
experimentally test the variants of the PTEN gene. We expect
our model to be equally effective in different genes under
various biological mechanisms. We collected PTEN alignment
sequences named PF10409 from the Pfam database, they are
also described as C2 domain of PTEN tumor-suppressor protein.
The dataset of PTEN mutation sequences seems scarcer and
more unbalanced and is also collected and screened from
ClinVar. Conditions of PTEN mutations include Cowden
syndrome 1 (Pilarski, 2009), PTEN hamartoma tumor syndrome
(Mester and Charis, 2016), Cutaneous melanoma (Bittner et al.,
2000; Balch et al., 2001) etc. A total of 44 mutations, with
only one negative (benign) sample, made data enhancement
indispensable. Different from the BRCA1 variants dataset,
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TABLE 5 | Prediction results of missense VUSs of BRCA1.

Name Protein change Clinical significance Pathogenicity

c.5566C>T (p.Pro1856Ser) P1856S, P1809S, P752S, P1877S Likely benign(Last reviewed: May 3, 2018) 0.997

c.2230G>A (p.Ala744Thr) A744T, A697T Likely benign (Last reviewed: Jun 29, 2016) 0.938

c.2207A>G (p.Glu736Gly) E736G, E689G Likely benign (Last reviewed: Feb 15, 2016) 0.909

c.2374G>A (p.Gly792Arg) G792R, G745R Likely benign (Last reviewed: Jul 3, 2017) 0.853

c.5153G>C (p.Trp1718Ser) W1718S, W1671S, W1739S, W614S Likely pathogenic (Last reviewed: Aug 4, 2015) 0.847

c.2177T>C (p.Leu726Pro) L726P, L679P Likely benign (Last reviewed: Apr 18, 2017) 0.831

c.2083G>T (p.Asp695Tyr) D695Y, D648Y Likely benign (Last reviewed: Mar 5, 2019) 0.811

c.4726G>C (p.Glu1576Gln) E1576Q, E1529Q, E1597Q, E472Q Likely benign (Last reviewed: Nov 10, 2014) 0.783

c.4750G>T (p.Ala1584Ser) A1584S, A480S, A1537S, A1605S Likely benign (Last reviewed: Feb 22, 2019) 0.783

c.1912G>A (p.Glu638Lys) E638K, E591K Likely benign (Last reviewed: Apr 18, 2016) 0.782

c.1522C>G (p.Pro508Ala) P508A, P461A Likely benign (Last reviewed: Jul 18, 2016) 0.772

c.1390A>G (p.Thr464Ala) T464A, T417A Likely benign (Last reviewed: Apr 21, 2016) 0.763

c.1487G>T (p.Arg496Leu) R496L, R449L Likely benign (Last reviewed: Aug 25, 2016) 0.757

c.4328G>A (p.Arg1443Gln) R1443Q, R1396Q, R340Q Likely benign (Last reviewed: Dec 8, 2015) 0.738

c.4185G>C (p.Gln1395His) Q1395H, Q292H, Q1348H Likely pathogenic (Last reviewed: Dec 21, 2017) 0.736

c.4565A>G (p.Tyr1522Cys) Y1522C, Y1543C, Y1475C, Y418C Likely benign (Last reviewed: Jan 23, 2018) 0.696

FIGURE 5 | Predictive performance of BertVS on the BRCA1 dataset from

ClinVar. The distribution of predicted probabilities and locations of BRCA1

mutations in ClinVar. The x-axis is the mutation position, and the y-axis is the

predicted probability of the mutation.

PTEN needs to add negative samples as noise. The same
length of normal PTEN protein sequences are truncated and
added to the training set as negative samples. As shown in
Figure 6, BertVS for variants of the PTEN gene achieved a
great prediction performance. In summary, the above effects
of our model further prove its strong predictive ability and
future prospects in the clinical diagnosis and treatment of
genetic mutations. In addition, the prediction results of PTEN
missense mutations were labeled as “Likely benign” and “Likely
pathogenic” from ClinVar.

FIGURE 6 | Predictive performance of BertVS on the PTEN dataset from

ClinVar. Receiver operating characteristic (ROC) curves of prediction results

obtained by applying BertVS.

5. CONCLUSION

In this paper, we propose a novel framework named BertVS
to predict missense mutations. To our knowledge, we are the
first to apply the BERT model to a representation learning of
protein sequence to predict the pathogenicity of gene mutations.
Specifically, we extracted the contextual information from the
protein sequence as well as the hydrophilic property of an amino
acid encoder. The experimental results illustrate the performance
of our proposedmethod with comparison to baselines. Moreover,
we also verify the superior performance of our method on
clinical data. Our method has good robustness and shows good
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generalization performance on BRCA1 and PTEN gene datasets.
For future research directions, computational intelligence such
as neural networks (Song et al., 2017, 2020; Hong et al., 2020),
evolutionary algorithms (Xu et al., 2017), and unsupervised
learning (Zou et al., 2018; Zeng et al., 2019a), which have been
applied in the prediction of drug targets (Quan et al., 2019; Zeng
et al., 2019b; Lin et al., 2020b), disease related miRNAs (Zhang
et al., 2017; Zeng et al., 2018), can be employed in this field.
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