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Abstract—Drug-drug interaction (DDI) plays an increasingly
crucial role in drug discovery. Predicting potential DDI is also
essential for clinical research. Given the high cost and risk of
wet-lab experiments, in-silico DDI prediction is an alternative
choice. Recently, deep learning methods have been developed
for DDI prediction. However, most of existing methods focus on
feature extraction from either molecular SMILES sequences or
drug interactive networks, ignoring the valuable complementary
information that can be derived from these two views. In this
paper, we propose a novel interpretable Multi-View Attention
network (MVA-DDI) for DDI prediction. MVA-DDI can effec-
tively extracts drug representations from different perspectives to
improve DDI prediction. Specifically, for a given drug, we design
a transformer-based encoder and a graph convolutional network-
based encoder to learn sequence and graph representations from
SMILES sequence and molecular graph, respectively. To fully
exploit the complementary information between the sequence and
molecular views, an attention mechanism is further adopted to
adaptively aggregate the sequence and graph representations by
taking the importance of different views into accounts, gener-
ating the final drug representations. Comparison experiments
demonstrated that our MVA-DDI1 model achieved superior
performance to state-of-the-art models on DDI prediction.

Index Terms—Multi-view learning, Contrastive learning, In-
terpretable attention network, Drug-drug interaction prediction

I. INTRODUCTION

Drug-drug interaction (DDI) refers to the situation where the
administration of one drug affects another or multiple drugs in
the human body. Such interactions can be synergistic or they
can produce completely new effects [1]. Because few diseases
can be cured by a single drug, combination therapy with
multiple drugs are more effective than monotherapy for most
diseases, which indirectly lead to the emergence of DDI with
side effect. Therefore, DDI prediction is of vital importance
in drug discovery and clinical research.

Traditionally, DDI prediction is performed by extensive bio-
logical or pharmacological trials, which is time-consuming and
labor-intensive. With the availability of large-scale biomedical
datasets and advancements in artificial intelligence technology,
deep learning models have been an emerging paradigm for
a wide range of cheminformatics and bioinformatics fields

1https://github.com/Luminous-wq/MVA-DDI

[2]–[4]. Meanwhile, there has been a surge in deep learning
methods in DDI prediction, it can serve as a low-cost but
effective alternative to predict potential DDIs by extracting
drug features from various data formats. Previous methods
often concentrate on obtaining the similarity features between
drug SMILES and other attribute profiles [5]. With the broad
success of graph neural networks (GNNs) [6], there has been
a trend toward extracting the topological features of molecular
graphs or substructures in recent years [7]. One line along this
trend, researchers propose to perform DDI prediction based
on chemical structure data of drugs such as CASTER [8]. On
the other hand, in KGNN [9], Lin et al. integrated the idea of
graph convolutional network (GCN) to extract both high-order
structures and semantic relations of knowledge graphs.

In most existing methods, researchers propose a single
network to learn molecular representations from a single
perspective, either similarity-based or graph (network)-based
methods [10], [11]. However, these methods will suffer from
the issue of inadequate feature encoding due to the single-view
learning under different types of DDI tasks. The challenge is
that multiple perspectives may interfere with each other [12],
especially when the learned features from different views of
the same drug can complement each other.

To alleviate the challenge, we propose an interpretable
multi-view attention network for DDI prediction (MVA-DDI).
In the proposed model, we use SMILES sequences as the
single input while taking into account both sequence and
molecular graph from the same drug molecule. Specifically,
we first adopt the sequence encoder (i.e., Transformer) with
Explainable Substructure Partition Fingerprint (ESPF) [13]
encoding by fully considering the substructures between drug
SMILES. Second, we use the graph encoder (i.e., GCN) to
extract the structural features by learning the molecular graph
transformed from SMILES via RDKit. Meanwhile, we use
self-supervised learning to obtain more informative initial drug
features by designing the contrastive loss function between
positive and negative samples of molecular graphs. After that,
we integrate the sequence and graph features for each drug to
obtain the final feature using an interpretable self-attention
mechanism, which is used to predict the potential interac-
tion probability of drug pairs via decoder. We evaluate our



proposed model on real-world dataset, and the experimental
results demonstrate that our MVA-DDI outperforms baseline
methods.

The main contributions of this paper are summarized as the
following:
(i) We propose a novel multi-view attention model named

MVA-DDI for predicting DDI, which is conducive to
learning high-quality features by taking into account
SMILES sequence and molecular structural graph.

(ii) MVA-DDI designs an interpretable attention network
to adaptively combine with the representations learned
from different views, which contributes to improving the
prediction performance of DDI.

(iii) Experimental results on real-world datasets demonstrate
the superiority of MVA-DDI to state-of-the-art methods.

II. RELATED WORKS

A. Single-view learning

Graph embedding-based method Complex data structures,
such as the heterogeneous network, is a naturally high-
dimensional space and mining effective information from such
intricate structures is regarded as an alternative for improv-
ing the model performance [10]. To address this challenge,
graph embedding-based methods have been proposed to adopt
popular network embedding algorithms to capture the under-
lying structure of the network and derive potentially effective
network-based features. These methods can be roughly catego-
rized into matrix factorization-based [14], random walk-based
[15] and neural network-based methods [16]. However, this
line of work only focuses on the connection between nodes
but ignores the node attributes and the types of edges.
Knowledge graph-based method To overcome the lack
of knowledge brought by graph embedding-based methods,
knowledge graph (KG)-based methods have been gaining in-
creasing attention owing to its powerful expression capabilities
for heterogeneous data. KG-DDI [17] is the first specialized
for DDI prediction that embeds the nodes in the constructed
KG using various embedding approaches. Recently, with the
popularity of graph neural network, some novel KG methods
integrate the idea of graph convolutional network (GCN)
to extract both high-order structures and the neighborhood
relations of KG, such as KGNN [9]. These methods achieve
promising results while they are easy to ignore the structural
information of the drug molecule.
Molecular graph-based method Drug molecules can be
naturally encoded by a graph with atoms as nodes and
chemical bonds as edges. The emergence of GNN has
sparked exploration into the molecular graph representation in
DDI prediction. In particular, Graph Convolutional Networks
(GCN), specifically designed for graph-structured data, have
been widely employed for spatial feature extraction in drug
research. More recently, identifying key substructures that
contribute most to the DDI prediction is a challenge for
GNNs. Substructure-based GNNs are designed to capture im-
portant substructures based on the chemical functional groups

in molecules, such as CASTER [8]. Molecular graph-based
methods show promising performance on various datasets.
However, these methods only consider molecular graphs or
substructures as fixed size and therefore they use GNNs with
predetermined node features to capture structural information.

B. Multi-view learning

Different from the aforementioned methods that model DDI
tasks in a single perspective, multi-view learning methods are
proposed to combine with two or multiple perspectives in an
efficient pattern, such as GoGNN [18] and MUFFIN [19].
In recent years, contrastive learning has been successfully
applied in gene regulatory interactions [20] and drug-target
interactions [21], and few of them have been applied to DDI
prediction. For instance, MIRACLE [22] combines GCN with
contrastive self-supervision by treating the DDI network as
a multi-view graph. AMDE [12] adopts MPNN [23] and
Transformer [24] to learn both graph and sequence features of
drugs, respectively. Different from these multi-view learning
models, MVA-DDI introduces a novel attention network that
can effectively leverage different perspectives of drugs by both
adopting sequence and graph encoder to improve performance.

Among the research on deep learning for DDI prediction,
ADME [12] is the most relevant to our work. Compared
with ADME, the proposed framework adopts the pre-training
strategy on large-scale datasets to obtain more generalized
node embedding of GNN by contrastive learning, while the
existing methods typically initialize or customize the node
embedding, which lacks good generalization ability. Moreover,
our work also suggests an effective self-attention mechanism
to fully consider the weights of sequence and graph features,
since different dimensions of features obtained from multi-
perspective have varying impacts on DDI prediction.

III. METHOD

In this section, we present the technical details of the
proposed MVA-DDI. Here we define the DDI prediction
as a binary classification task. Specifically, given a drug-
drug pair dx and dy (dx, dy ∈ D) with D denoting the
set of known DDI, we aim to learn a prediction function
f : D×D× I → {0, 1} to infer the probability of the pair to
be a real drug-drug interaction.

A. Overview

The overall framework of the proposed MVA-DDI is shown
in Figure 1. First, with the drug SMILES sequence as input, we
design two feature extraction modules to extract the sequence
and graph features from the SMILES sequence and the molec-
ular graph, respectively. Specifically, the sub-sequences are
generated by ESPF and fed into Transformer-based sequence
encoder to obtain sequence representation. Meanwhile, taking
molecular graph obtained by converting SMILES sequence
with RDKit as input, we utilize a GCN-based graph encoder
to derive graph representation. To learn more informative
representation, a self-supervised pre-training strategy is intro-
duced. Second, a self-attentive feature aggregation module is
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Fig. 1. The overall architecture of the proposed MVA-DDI model. A) Overview of MVA-DDI. B) Self-supervised module. C) Feature aggregation module.

designed to obtain the integrated drug representation. Finally,
with the integrated drug representation as input, the classifier
outputs the interaction probability of DDI.

B. Transformer-based sequence encoder

We design a transformer-based sequence encoder to extract
the chemical context of SMILES sequences. Transformer is an
appropriate choice as it is widely used for sequence encoding
in natural language processing [24]. Specifically, we employ
the ESPF algorithm [13] to facilitate the process of sequence
encoding. This algorithm can break down the SMILES se-
quences into smaller sub-sequences or atomic symbols. These
substructures are then mapped to corresponding embedding
vectors through predefined dictionary. Thus we obtain the
word embedding WE and position embedding PE as the
input of the Transformer model.

Generally, the input of Transformer is the word embedding
WE, and the position embedding PE of SMILES sequence.
Different from the traditional Transformer that takes these
two vectors separately, we adopt an Embedding Layer to
generate a vector X with the same dimension size by adding
WE and PE together, and then feed it into the Transformer,
which primarily relies on multi-head self-attention and feed-
forward neural network. The self-attention mechanism is a
core component of the Transformer model. Specifically, it can
be formulated as follows.

(Q,K, V ) = X ∗ (WQ,WK ,WV ) (1)

Attention(Q,K, V ) = softmax(
QK⊤
√
dK

)V (2)

where Q, K, and V represent the query, key, and value vectors,
respectively, W represents the corresponding weights that are
initialized by neural network, and dK represents a dimension
of feature vector K. We obtain the contextual representation x
for each position by performing self-attention calculations of
input sequence. The feed-forward neural network consists of
two fully connected layers and an activation function, which
are used to perform nonlinear transformations and to map the
representations of each position. Finally, the sequence feature
Fs is obtained as follows.

Fs = softmax(ReLU(xW1 + b1)W2 + b2) (3)

C. GCN-based graph encoder

We design a GCN-based graph encoder to extract the
structural features of molecular graphs. Here we use graphs
to model the relationships between atoms and their chemical
bonds. GCN can effectively encode the structural information
of a graph. Let’s denote the feature and adjacency matrices
as X ∈ RN×d and A ∈ RN×N , respectively, where d and
N represent the dimension of feature and the number of
nodes. Each entry Ai,j indicates whether there is a connection
between node i and j. Taking the molecular graph as input, the
encoder outputs graph representation by smoothing features
of neighbors. Specifically, as shown in Figure 1, we first
use RDKit to convert SMILES sequence into a 2-dimension
structure of molecular graph where nodes and edges denote
atoms and relationships between them. A feature vector for
each atomic is defined, as shown in Table I.

The specific propagation of GCN is as follows:



TABLE I
THE LIST OF PREDEFINED ATOM FEATURES.

Atom Feature Size Description

Atomic symbol 44 [C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As, Al,
I, B, V, K, Tl, Yb, Sb, Sn, Ag, Pd, Co, Se, Ti, Zn, H,
Li, Ge, Cu, Au, Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb,
Unknow] (One-hot)

Atomic degrees 11 Degree of atoms in a drug [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10] (One-hot)

Implicit value 7 Implicit valence of atoms [0, 1, 2, 3, 4, 5, 6]
Formal charge 1 The formal charge of the atom, which usually ranges

from -3 to +3
Radical electrons 1 The number of free radical electrons of an atom, which

usually ranges from 0 to 2
Hybridization 5 The atomic hybridization mode [SP, SP2, SP3, SP3D,

SP3D2] (One-hot)
Atomic aromaticity 1 Whether the atom is aromatic or not [0/1]

Total hydrogen atoms 5 Total number of hydrogen atoms in the atom [0, 1, 2,
3, 4] (One-hot)

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

where H(l) represents the feature matrix at the l−th layer, and
we set H0 to X . To incorporate with the self-features of all
nodes in A, we have Â = A+I , and I is the identity matrix, D
is the degree matrix of A, and D̃ =

∑
Ãi,j . σ is a non-linear

activation function such as ReLU . In the last layer, softmax
is used for classification prediction. W (l) is the trainable
parameter matrix for the convolution transformation of the
current layer. The convolution in GCN is computed based on
the product of the adjacency matrix and the feature vector.
This operation allows each node to propagate information with
its neighboring nodes, which results in updating the feature
representation of each node. Finally, we obtain the graph
feature Fg vectors from the last layer as follows.

Fg = softmax(H) (5)

D. Self-supervised pre-training

The key contribution of this paper lies in the design of self-
supervised pre-training module. It consists of data preprocess-
ing, data argumentation, and contrastive loss function.
Data preprocessing. To fully consider the property of drug-
like in pre-training, we extracted 4,194 FDA-approved small
molecule drugs and 5,805 candidate molecules in preclinical
phases from the ChEMBL (Version 32) database. Meanwhile,
we downloaded 1,704 drugs from the DrugBank database and
obtained a total of 11,703 small-molecule drugs. Then we
removed small molecules without SMILES, duplicated, and
that could not be parsed by RDKit, and finally obtained a
total of 8,722 small molecule drugs for pre-training.
Data argumentation. To facilitate contrastive learning, it is
necessary to obtain more samples. The data argumentation
method is designed to generate the corresponding positive and
negative samples of a given SMILES. The method is based on
two graph-specific operations, including random node dropout
and edge modification, which result in random perturbations to
the graph features and assist the model in learning additional
information. Specifically, the positive sample pair is generated
by implementing five random node dropouts and five random

edge modifications to the current SMILES. The specific oper-
ation is to randomly select five columns of data in the node
features matrix and set them to 0, and randomly select five
pairs of data in the adjacency matrix for value (i.e., 0 or
1) exchange (similar to the deletion and increase of edges).
Then the positive sample pair is formed with oneself and
labeled as 1. The negative sample pair is obtained by randomly
selecting a sample that is different from the current SMILES
to perform five random node dropouts and five random edge
modifications, then the negative sample pair is formed and
labeled as 0, The above operation of the negative sample is
repeated 5 times.
Contrastive loss function. The GCN-based contrastive self-
supervised module is designed to enhance the discriminative
representation of drug features. The proposed model is op-
timized by using a contrastive loss. For a pair of samples
(di, dj), their assigned label is denoted by yij (yij ∈ {0, 1}),
where yij = 0 indicates they belong to a negative sample
pair, otherwise the opposite is positive. We denote their
corresponding output vectors as oi and oj , respectively, and
the contrastive loss between them is defined as follows:

Lij =
1

2

(
(1− yij)d(oi, oj)

2 + yij max(0,m− d(oi, oj))
2
)

(6)
where d(oi, oj) represents the distance between the two vec-
tors, and we have d(oi, oj) = ∥oi − oj∥. m is a margin
parameter that controls the distance between sample pairs. The
first and second terms correspond to the loss for negative and
positive sample pairs, respectively. The final contrastive loss
function is averagely obtained by summing up the loss for
each sample pair as follows:

Lcl =
1

N

N∑
i=1

Li
cl (7)

where N represents the number of sample pairs, and we have
Li
cl = Lij . The entire propagation process of contrastive self-

supervised pre-training model is as follows. In the process
of forward propagation, the inputs are the output vectors oi
and oj , along with their labels yij . The forward function first
calculates the L2 distance between the two vectors, referred
to as euclidean distance. Then it computes the contrastive loss
based on the formula. Finally, the contrastive loss is returned
as the feedback signal for backpropagation to optimize the
network parameters.

E. Feature aggregation
To obtain the final embedding of drug representation, the

effective feature aggregation module is employed to combine
the sequence and graph feature vectors into a more expressive
feature vector. For the sequence features Fs and graph features
Fg , three feature aggregation methods are designed as follows.
Sum. This is the simple but effective method to obtain the
final representation of drug features. The operation is imple-
mented by element-wise adding up two types of features. The
computation is obtained by:

Sum(Fs, Fg) = Fs + Fg (8)



Cat. The concatenate operation, abbreviated as cat, is im-
plemented by splicing multiple features along a certain axis.
This method preserves all the information from the individual
features, the increase in dimensions of feature vector may
affect model complexity.

Cat(Fs, Fg) = [Fs, Fg] (9)

Attention. The attention operation is a method based on
weighted averaging. It involves assigning weights to different
feature vectors based on their importance and then combining
them through a weighted sum to obtain the final feature
vector. This approach allows for dynamic adjustment of the
weights W assigned to each feature vector, which can enable
a more refined fusion effect by emphasizing or de-emphasizing
specific features based on their relevance.

Attention(Fs, Fg) = W1Fs +W2Fg (10)

F. Drug-drug interaction prediction

Given a DDI tuple (dx, dy, r), the DDI prediction can be
expressed as the joint probability as follows:

P (dx, dy, r) = σ(Wxy[(F
x
s ⊙ F x

g ), (F
y
s ⊙ F y

g )] · Ur) (11)

where σ is the sigmoid function, Wxy and Ur are learnable
representations of interaction type r, and ⊙ represents the
Attention feature aggregation used in this work. The learning
process of the proposed MVA-DDI model can be achieved by
minimizing the cross-entropy loss function as follows.

Lc = −
∑

PlogP̂ − λ(1− P )log(1− P̂ ) (12)

Backpropagation propagates from the output layer to each
preceding layer. The end-to-end approach is used to train all
trainable parameters in the model.

IV. RESULTS

In this section, we first introduce the experimental setups
and then demonstrate the performance of the proposed model
MVA-DDI through comparison with baseline methods.

A. Datasets

The known DDI pairs used in our experiment were down-
loaded from the DrugBank (v5.1.9) database, where we ex-
tracted 124,725 drug-drug pairs between 1,704 approved small
molecule drugs. Besides, we collected the SMILES sequences
and category information for these 1,704 drugs.

B. Baseline methods

To validate the performance of the model, we compare
MVA-DDI with seven baseline methods. Next, we simply
introduce each method as follows:

• DeepWalk [15] is a graph-based method proposed for
representation learning.

• GraRep [14] learns low dimensional representation by
integrating global structure information of the graph into
the learning progress.

• GAE [16] is a graph autoencoder model that is proposed
to learn low dimensional representation of the graph.

• DeepDDI [5] is a deep neural network method developed
to predict DDI.

• CASTER [8] is a deep learning method that encodes the
functional substructures of drugs for DDI prediction.

• KGNN [9] proposes a knowledge graph neural network
to predict DDI by incorporating prior knowledge graph.

• AMDE [12] presents a multi-view deep learning for
DDI prediction, which simultaneously models SMILES
sequence and atom graph to learn drug representation.

We compare MVA-DDI with baseline methods on the same
DrugBank datasets. For fair comparison, all baseline methods
use the default parameters.

C. Metrics

We use four well-known measurement metrics to evaluate
the performance, i.e., accuracy (ACC), area under ROC curve
(AUROC), area under the precision-recall curve (AUPR), and
F1 score.

D. Experimental settings

In this work, we conduct standard 5-fold cross-validation
(CV) to evaluate the performance of the model. In particular,
we randomly split known drug-drug pairs into five groups. For
each round, we select in turn one group of drug-drug pairs for
model testing, while the remaining four groups are used for
model training. During pre-training, the ratio of positive and
negative sample pairs is set to 1:5. For the sequence encoder,
we set the number of attention heads to 8. The length of
sequence features is set to 50. The output dimension in the
GCN encoder is 75. We use the Adam algorithm for model
optimization. The learning rate is set to 1e-4 and the training
epoch is 50.

E. Performance evaluation

In this section, we compare the performance of our MVA-
DDI model with baseline methods. Table II shows the com-
parison results. It can be observed that MVA-DDI consistently
outperforms baseline methods in terms of four metrics. Specif-
ically, MVA-DDI achieves an average ACC of 94.49%, an
average AUROC of 98.43%, an average AUPR of 98.45%, and
an average F1-score of 94.55%, which improves the second-
best method AMDE by 2.57%, 1.32%, 1.68%, and 1.17%,
respectively. Besides, we can uncover from Table II that multi-
view learning models (i.e., AMDE and MVA-DDI) have better
performance than single-view models (e.g., DeepDDI, and
KGNN), indicating that learning representations from multiple
perspectives helps to improve the performance of the model.

While both MVA-DDI and AMDE use molecule sequence
and graph information to learn representation, there are two
main advantages of MVA-DDI compared to AMDE. First,
MVA-DDI is able to learn more informative graph repre-
sentations than AMDE. MVA-DDI introduces a pre-training
mechanism to learn graph features using a large amount of
prior drug data instead of the training drug data. Second,
when integrating representations from different views, MVA-
DDI adopts an attention mechanism that allows the model



TABLE II
PERFORMANCE COMPARISON BETWEEN MVA-DDI AND BASELINES.

Model ACC AUROC AUPR F1

DeepWalk 83.44±0.07 91.76±0.04 90.64±0.05 83.53±0.08
GraRep 84.45±0.06 92.30±0.14 91.15±0.07 84.64±0.12
GAE 81.35±0.46 88.82±0.32 85.95±0.42 82.53±0.40
DeepDDI 82.81±0.21 88.38±0.53 89.23±0.84 83.53±0.21
CASTER 84.38±0.11 91.57±0.09 91.60±0.16 85.60±0.12
KGNN 89.53±0.16 93.64±0.27 92.86±0.28 90.06±0.11
AMDE 91.92±0.46 97.11±0.29 96.77±0.34 93.38±0.37
MVA-DDI 94.49±0.44 98.43±0.34 98.45±0.33 94.55±0.39

to adaptively aggregate view-specific representations, while
AMDE utilizes simple sum and concatenation methods.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a novel interpretable multi-view
attention network, named MVA-DDI, for DDI prediction.
MVA-DDI is a dual-channel representation learning frame-
work that fully exploits both the SMILES sequence and the
molecular structure information. In particular, for the SMILES
sequence, we design a transformer-based encoder to learn the
sequence representation by taking the chemical context of
atoms into account. For the molecule graph, we use a self-
supervised graph contrastive learning encoder to learn the
graph representation. This self-supervised learning encoder
allows the model to extract informative graph representations
by pre-training on a large number of drug molecules. To com-
bine the representations obtained from both views effectively,
an attention mechanism is introduced to adaptively fuse both
sequence and graph representations by considering the impor-
tance of different views to each drug. Extensive experimental
results demonstrated that our MVA-DDI outperformed seven
state-of-the-art methods in predicting drug-drug interactions.
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