
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-7281-1867-3/19/$31.00 ©2019 IEEE 717

2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-7281-1867-3/19/$31.00 © 2019 IEEE

GraphCPI: Graph Neural Representation Learning
for Compound-Protein Interaction

Zhe Quan†, Yan Guo†, Xuan Lin†, Zhi-Jie Wang(�)‡,#,§, and Xiangxiang Zeng†
† College of Information Science and Engineering, Hunan University, Changsha, China
‡ School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China

Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, China
§ National Engineering Laboratory for Big Data Analysis and Applications, Beijing, China

{quanzhe, guoyan, jack_lin, xzeng}@hnu.edu.cn, wangzhij5@mail.sysu.edu.cn

Abstract—Accurately predicting compound-protein interac-
tions (CPIs) is of great help to increase the efficiency and reduce
costs in drug development. Most of existing machine learning
models for CPI prediction often represent compounds and
proteins in one-dimensional strings, or use the descriptor-based
methods. These models might ignore the fact that molecules are
essentially structured by the chemical bond of atoms. However,
in real-world scenarios, the topological structure information
usually provides an overview of how the atoms are connected, and
the local chemical context reveals the functionality of the protein
sequence in CPI. These two types of information are comple-
mentary to each other and they are both important for modeling
compounds and proteins. Motivated by this, this paper suggests
an end-to-end deep learning framework called GraphCPI, which
captures the structural information of compounds and leverages
the chemical context of protein sequences for solving the CPI
prediction task. Our framework can integrate any popular graph
nerual networks for learning compounds, and it combines with
a convolutional neural network for embedding sequences. We
conduct extensive experiments based on two benchmark CPI
datasets. The experimental results demonstrate that our proposed
framework is feasible and also competitive, comparing against
classic and state-of-the-art methods.

Index Terms—Compound-Protein Interaction, Graph Neural
Network, Representation Learning, Drug Discovery

I. INTRODUCTION

Development of potential drugs for new targets/proteins is

a costly and time-consuming process. Accurately identifying

compound-protein interactions (CPIs) is a key task in phar-

macology and drug discovery [1]. In the CPIs task, compound

refers to molecular compounds (instead of ionic compounds),

which can be represented by a molecule graph with atoms

as nodes and chemical bonds as edges; while proteins are

sequences of amino acids. Interaction between compound-

protein pair indicates that compounds can have a positive or

negative influence on functions triggered by proteins. This may

affect the disease conditions.

By understanding the CPI task, it can help users find out

candidate compounds that are able to inhibit the protein,

and it benefits many other bioinformatic applications such as

drug resistance [2], side effect prediction [3]. As a result,

CPI prediction has received much attention in recent years.

Traditional machine learning approaches for CPI prediction

can be roughly classified into feature-based and similarity-

based methods. Generally, feature-based methods construct

input vector from descriptors of compounds and proteins,

such as molecular docking and the 3D structure-embedded of

protein, which are often difficult to obtain. On the other hand,

similarity-based methods rely on hypothesis that compounds

with similar structures should be of similar properties [4].

Recently, owing to the remarkable success in various machine

learning tasks (e.g., natural language processing [5]), deep

learning methods are also exploited for CPI prediction [6].

In this branch, existing methods consider either label/one-

hot encodings or the fingerprint of molecules, they have not

considered the chemical bond of atoms and the local chemical

context of amino acids. However, in real-world scenarios, the

topological structure information usually provides an overview

of how the atoms are connected, and the local chemical context

reveals the functionality of the protein sequence in CPI, which

is just like the semantic meaning of a word in a sentence.

These two types of information are complementary to each

other and they are both important for modeling compounds

and proteins.

Inspired by the aforementioned facts, in this paper we

attempt to develop an end-to-end deep learning framework that

combines the local chemical context for sequences and topo-

logical structure for molecules to learn the interaction between

compounds and proteins. To this end, we propose a graph
neural representation framework for CPI prediction, and we

refer to it as GraphCPI. Our framework consists of two major

building blocks: One of the major building blocks learns low-

dimension vector representations for protein sequences using a

convolutional neural network (CNN), while the other building

block learns graph representations for compounds using graph

neural network (GNN), respectively. Specifically, the CNN

building block extract the local chemical context information

for amino acids in proteins; in the process of extracting, we

propose to incorporate Prot2Vec [7] to encode the amino acids

to a distributed representation, which can efficiently avoid the

limitation of the label/one-hot encodings of amino acids, since

718

it often ignores the context information. Meanwhile, the GNN

building block extracts the topological features for compounds

by constructing a molecular graph. The GNN building block is

pretty flexible, which can be replaced by any popular graph-

based neural networks. The learned representations for both

compounds and proteins are then passed to a dense neural net-

work for predicting the interaction. Different from the existing

feature-based and similarity-based methods, our framework

needs neither molecular docking nor 3D structure-embedded

of the proteins. Additionally, the proposed framework takes

advantage of the topological information of atoms encoded in

the graph neural representation, which differs our framework

from the existing deep learning methods such as DeepCPI
[8]. In a nutshell, the main contributions of this paper are as

follows:

• We propose a framework that incorporates the advanced

graph neural representation for compound and pre-trained

embedding techniques for protein sequences together.

To the best of our knowledge, this paper is the first

to combine the local chemical context and topological

structure to learn the interaction between compound-

protein pairs.

• We conduct extensive experiments based on two widely-

used CPI datasets with various imbalance ratios. The ex-

perimental results demonstrate the feasibility and compet-

itiveness of our proposed framework, compared against

the classic and state-of-the-art methods.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III introduces the proposed

framework for CPI prediction task. Section IV covers and

analyzes the experimental results. Finally, we conclude the

paper in Section V.

II. RELATED WORK

Compound-protein interactions (CPIs) prediction has been

an interesting topic in drug discovery. Prior works focused

either on simulation-based methods (e.g., descriptors), or

on machine learning based models, which heavily rely on

domain similarity. For example, with a variety of similarity

information, Bleakley et al. [9] presented the bipartite local

model (BLM) to predict CPIs, they trained local support vector

machine (SVM) classifiers with the help of known interactions.

Later, Mei et al. [10] improved BLM by exploiting the

already known interactions of neighbors, which compensates

the lack of BLM. Although classic methods show reasonable

performance in CPI prediction, they are often computational

expensive, require additional expert knowledge, or the 3D

structure-embedded of protein, which are often difficult to

obtain. Different from these classic methods, the proposed

framework is able to automatically extract features from the

data, and requires neither domain knowledge nor 3D structure

of the target/protein. These main features make our proposed

framework applicable to large scale CPI datasets.

Also, much attention has been devoted to applying deep

learning techniques for drug-target interactions (DTIs) pre-

diction (which is an alternative name of CPI prediction). For

C1=CC(=CC=C1O...

.

.

.

Aspirin

Phospholipase

MRTLQGWLLP... Prot2Vec

RDKit

CNN

GNNGN

Protein
Representation

Com
pound

Representation
Concate

Predict the interaction

Protein
Representation

Com
pound

Representation
Concate

Predict the interaction

CN

Fig. 1. The overview of GraphCPI. The top part illustrates a 3-layer CNN that
learns representation for proteins, while the bottom part illustrates a 3-layer
GNN that learns representation for compound.

example, Xie et al. [11] modeled DTI prediction as a binary

classification and developed a deep-learning based model to

predict potential interactions. Yasuo et al. [12] developed a

method named CoDe-DTI that combines content-based and

collaborative filtering to avoid some issues (e.g., lack of

diversity and cold-start). Moreover, Wan et al. [13] developed

a nonlinear end-to-end learning model named NeoDTI that

integrates diverse information from heterogeneous network

data, and it automatically learned topology-preserving rep-

resentations of drug-target pair to facilitate DTI prediction.

Recently, a model called DeepCPI was proposed for CPI

perdition [8]. Among the studies in this line branch, Deep-

CPI could be the one most relevant to our work, since it

addresses the problem same to ours, and uses also GNN and

CNN. Specifically, DeepCPI uses a traditional GNN, based on

representation of r-radius fingerprints, to encode the molecular

structure of compounds; and it uses a CNN to encode protein

sequences without pre-trained embedding. Compared with

DeepCPI, for compound representation our proposed deep

learning framework incorporates the topological information

obtained from GNN to encode the atoms using Prot2Vec, and

it uses pre-trained embedding to encode the amino acids to

boost the representation learning of proteins. Moreover, our

framework could be much more flexible, since it allows us to

integrate any popular GNN model.

III. THE GRAPHCPI FRAMEWORK

In this section, we firstly describe an overview of the

proposed framework called GraphCPI (Section III-A), and

then we present the representation learning for compounds and

for proteins, respectively (Sections III-B ∼ III-C). Finally, we

present the detail of CPI task prediction (Section III-D).

A. Overview of GraphCPI

Figure 1 gives an overview of our proposed framework,

named GraphCPI, for the compound-protein pair task. Gener-

ally, GraphCPI takes the molecular structure of the compound
and the symbolic sequences of the protein as the inputs. Then,

the molecular structure of the compound in SMILEs string

is encoded into a molecular graph, while the sequence of

the protein is encoded into a distributed representation (like

719

Word2Vec [14]), forming a matrix. Later, the molecular graph

is fed into graph neural networks (GNN) for capturing the

structural information of the compound, while the matrix is

fed into convolutional neural networks (CNN) to obtain local

chemical context of the protein. As a result, we obtain two

latent representation for compound and protein, respectively.

After that, we further feed the concatenation of two latent

representations into a stack of fully connected layers, and

finally GraphCPI outputs a binary value for the compound-

protein pair (1 means interaction, and 0 means otherwise).

B. Graph Representation for Compounds

As we known, compounds are often expressed in the format

of SMILES (Simplified Molecular-Input Line Entry System)

[15]. The molecular structure is a significant part in graph

neural representation learning for compounds. To represent

such a structure efficiently, most of existing methods either use

similarity-based manner/strategy to infer the unknown CPI,

or use molecular fingerprints and protein family databases

to represent compound-protein pairs. These methods usually

have fixed features, while they cannot learn more features

for compound and protein representation. To alleviate such

dilemmas, in this paper we propose to use the end-to-end

representation learning that combine with the advanced em-

bedding techniques for compounds and proteins. Specifically,

for each input SMILES string of a chemical compound, we

use RDKit [16] tool to transform it into a molecular graph,

which is represented as G = (V, E), where V denotes the atomic

feature and E denotes the chemical bond value between adja-

cent atoms. In our method, we adopt 5 kinds of atom feature

used in DeepChem (https://github.com/deepchem/deepchem).

These atom properties constitute a binary feature vector with

size 78. The first 44 entities (starting from 0) represent the

atomic symbols, the 44-54 entities represent the atomicity, the

55-65 entities represent the total number of hydrogen, the 66-

75 entities represent the implied value of atoms, and the last 2

entities represent whether atoms are aromatic. The list of the

initial atom features is summarized in Table I.

Once such a molecular graph is obtained, one can fed it

into any popular graph neural network model (e.g., GCN [17],

GAT [18], GIN [19]) to obtain the structural information of

the compound. As we will show later, although different graph

neural network models may exhibit their own advantages for

different evaluation metrics, but their performance gaps are

small.

TABLE I
THE LIST OF INITIAL ATOM FEATURES

Atom Type Description

Atomic symbols C, N, O, S, F, Si, P ...
Atomicity 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

The total number of hydrogen 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
The implied value of atoms 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
whether atoms are aromatic 0, 1

Original Sequence
MSFDFDLTAPFQTA...SNKNK

560 amino acids
560 words

1)MSF, DFD, LTA, PFQ, … , SNK
2)SFD, FDL, TAP,FQT, …, NKN
3)FDF, DLT, APF, QTA, …, KNK

Fig. 2. Example of split protein sequence.

C. Sequence Representation for Proteins

Proteins are generally represented as a sequence of amino

acids (e.g., ”MSFDFDLT...”). Similar to the SMILES string,

we propose to first encode the amino acids into d-dimensional

vector using Prot2Vec [7]. Since a single aimno acid often

makes no sense, we adopt a fixed length N-gram splitting

method to partition the sequence into meaningful “biological

words”. Compared with the commonly used label encoding

methods, the fixed-length N-gram divides the sequence into

a sequence of N-grams. Thus, each N-gram can be regarded

as ”biological word”. Intuitively, it can generate more ”word

context” than the commonly used label encoding method based

on one-hot. Figure 2 illustrates an example of fixed-length N-

gram splitting method. In this example, 560 amino acids can

generate 560 words by N-gram splitting, while only 20 kinds

of amino acids to be encoded by label encoding.

After we obtain the meaningful “biological words”, then

for each such a word we map it to an embedding vector by

looking up a pre-trained embedding dictionary that has 9048

words and a 100-dimension vector per word, which is obtained

from Swiss-Prot (https://www.uniprot.org/). One can set the

fixed length to a specific value (e.g., 1000), then the sequence

will be truncated when its length over the default value (e.g.,

1000); otherwise, it will be padded with 0. As a result, we

transform each sequence of amino acids to a matrix where

each row is the embedding of a biological word. The matrix

is then fed into a CNN to obtain the local chemical context

of the protein.

D. Compound-protein Interaction Prediction

It is easy to understand that, one can view the compound-

protein pair prediction as a binary classification problem

by predicting the interaction value. With the representation

learned from the previous subsections, in what follows, we are

ready to integrate all features from compounds and proteins

to predict the interaction.

Generally, we concatenate two kinds of representations,

and feed them to two fully-connected layers to output the

interaction value. More precisely, for the GNN building block,

we adopt three consecutive layers to update the node vectors

in a molecular graph with regard to their neighbor nodes.

For the CNN building block, we adopt three consecutive 1D-

convolutional layers. Here the Rectified Linear Unit (ReLU)

[20] is selected as the activation function. Then, given a set of

compound-protein pairs and the ground-truth interaction val-

ues in the training set, its objective is essentially to minimize

the loss function L [8] as follows:

720

L(Θ) = −
K∑
i=1

logPti +
λ

2
‖Θ‖22 (1)

where Θ denotes the set of all weight matrices, bias vectors

in our framework (e.g., GNN and CNN), and the embeddings

of N-gram words; K is the total number of compound-protein

pairs, ti is the i-th label, and λ represents an L2 regularization

hyper-parameter. Here, we adopt back-propagation to train Θ.

IV. EXPERIMENT

In this section, we first describe the experimental settings

including datasets, evaluation metrics and baseline approaches

(Section IV-A). Then, we compare our proposed framework

GraphCPI with classic and state-of-the-art methods (Section

IV-C).

A. Experimental Setup

Dataset. Following prior work [6], in our experiments we used

two publicly available datasets called human and C.elegans for

compound-protein interaction prediction.

• The human dataset contains 3369 positive interactions be-

tween 1052 unique compounds and 852 unique proteins.

• The C.elegans dataset contains 4000 positive interactions

between 1434 unique compounds and 2504 unique pro-

teins.

In our experiments, we used a python library called Pub-
ChemPy (https://github.com/mcs07/PubChemPy) to obtain the

SMILES format of compounds, and we extract the protein

sequence from Uniprot (https://www.uniprot.org/uploadlists/).

In addition, since the ratio of positive and negative samples

may affect the performance, we followed [6] and also used

three different ratios (1:1, 1:3 and 1:5) to validate the perfor-

mance. A more detailed description is summarized in Table

II.

Evaluation metrics. We use three kinds of metrics, widely

used in CPI task, to evaluate the performance. They are

precision, recall and AUC [6]. Here, the AUC refers to the

probability that a randomly chosen positive sample is ranked

higher than a negative one [6]. It is computed as:

AUC =

∑
I(Ppos, Pneg)

P ∗N (2)

where P and N denote the number of positive and negative

samples, respectively; Ppos and Pneg are the probability of

TABLE II
THE DETAILED DESCRIPTION OF DATASETS

negative ratio compounds proteins positive negative

1 1052 852 3369 3369
human 3 1052 852 3369 10107

5 1052 852 3369 16845
1 1434 2504 4000 4000

C.elegans 3 1434 2504 4000 12000
5 1434 2504 4000 20000

obtaining positive and negative samples by the prediction

model, respectively; and I(Ppos, Pneg) is computed as:

I(Ppos, Pneg) =

⎧⎪⎨⎪⎩
1, Ppos > Pneg

0.5, Ppos = Pneg

0, Ppos < Pneg

(3)

Baseline methods. We compared our proposed framework

against both classic and state-of-the-art methods. As for classic

models, in our experiments we compared four traditional ma-

chine learning models1, including k-NN, random forest (RF),
L2-logistic (L2), and SVM. For these models, all parameter

settings were kept as the same as in [6]. As for the state-

of-the-art model, we directly compared a recently published

model called DeepCPI [8]. In brief, this method uses the

representation of r-radius fingerprint to encode the structural

information in a chemical compound, and learns node and

edge features using a graph neural network (GNN). Mean-

while, it uses the no pre-trained embedding of amino acids

to encode protein sequences, and learns the chemical context

using a convolutional neural network (CNN). In DeepCPI,

a GNN maps a graph G = (V,E) to a vector y ∈ Rd by

two transition functions: (i) v
(t+1)
i = σ(v

(t)
i +

∑
j h

(t)
ij), and

(ii) e
(t)
ij = σ(etij + gtij). Here σ is the element-wise sigmoid

function (e.g., 1/(1 + e−x)), f is a non-linear activation

function, v
(t)
i and etij denote the node and edge embeddings

between the i-th and j-th nodes at time step t respectively, h
(t)
ij

denotes the hidden vector, which is obtained by combining

node vj(j ∈ neighbor(vi)) with edge eij , as shown in Eq. 4.

The parameter gtij is updated by node vti and vtj , as shown in

Eq. 5.

h
(t)
ij = f(W

[
v
(t)
j

e
(t)
ij

]
+ b) (4)

gtij = f(W (v
(t)
i + v

(t)
j) + b) (5)

For ease of comparison, in our experiments all the above

parameter settings were consistent with the original paper.

Implementation of our framework. As mentioned in Section

III-B, once the molecular graph is obtained, one can feed it

into any popular graphic neural network model to obtain the

topological information of compounds. In order to examine

the robustness of our proposed framework, we employed

respectively three kinds of popular graph neural networks,

and used each of them as the building block of the proposed

framework. Specifically, these three types of graph neural

networks are described as follows.

(1) GCN [17](https://github.com/tkipf/gcn): This approach

introduces a graph Laplacian regularization and pro-

poses a 2-layer Graph Convolutional Network (GCN)

with the following layer-wise propagation rule: H(l+1) =
σ(D̃− 1

2 ÃD̃− 1
2H(l)W (l)), where Ã = A+IN is the adjacency

matrix of the undirected graph G, IN is the identity matrix,

1These models were obtained from http://admis.fudan.edu.cn/negative-cpi/.

721

TABLE III
THE MAIN PARAMETER SETTING

Parameter Setting Parameter Setting

Optimizer Adam Learning rate 0.0005
Epoch 1000 Batch size 512
Kernel size 8 Vector dimension 100
sequence length 1000

Dii =
∑

j Ãij , W (l) is a layer-specific trainable weight

matrix; σ(.) denotes an activation function (e.g., ReLU [21]),

and H(l) ∈ RN×D is the matrix of activations in the l-th
layer.

(2) GAT [18](https://github.com/PetarV-/GAT): This method

uses a graph convolution model based on self-attention mech-

anism. It adds a graph attention layer (GAT) in its component.

A set of node features x ∈ RF is regarded as input of GAT

layer, and then it applies a linear transformation to each node

based on a weight matrix W ∈ RF×F
′
, where F and F

′

denote the dimension of input and output nodes, respectively.

Additionally, attention coefficients between nodes and its 1-

hop neighbors are used to compute the output node. That

is, eij = α(W�hi,W�hj), where eij denotes the importance

degree of node j to node i. To make coefficients easily

comparable across different nodes, it normalizes them across

all choices of j using the softmax function as follows: αij =
softmaxj(eij). At last, a non-linearity σ is applied to com-

pute the output node �h
′
i as follows: �h

′
i = σ(

∑
j∈Ni

aijW�hj).

(3) GIN [19](https://github.com/weihua916/powerful-gnns):

This method uses a graph isomorphism network to achieve

the maximum discriminative power among GNNs. In par-

ticular, multi-layer perceptrons (MLPs) are used in GIN for

modelling and parameter updating. It updates the node rep-

resentation as follows: h
(k)
v = MLP (k)((1 + ε(k)) · h(k−1)

v +∑
u∈N(v) h

(k−1)
u), where ε is either a learnable parameter or

a fixed scalar, h ∈ RF is the node feature vector, and N(i) is

the neighbors of node i.

For ease of presentation, we refer to our proposed frame-

work integrating GCN [17] as GraphCPI GCN. Similarly,

we refer to other three methods integrating GAT [18], GIN

[19], and GAT-GCN as GraphCPI GAT, and GraphCPI GIN,

respectively. In what follows, when we mention a method

GraphCPI without any suffix (e.g., GAT, or GCN), it refers

to GraphCPI GCN, unless stated otherwise.

Other implementation details. For GNN block, we used

an initial atom vector with size 78 as the input of

GNN model. For Prot2Vec, we used 100-dimension pre-

trained embedding representation for N-gram words. We

constructed matrices with (1000×100) dimensions for pro-

tein, where 1000 refers to the fixed length of the protein

sequence. The proposed framework was implemented us-

ing PyTorch (https://github.com/pytorch/pytorch) with Ten-

sorflow [22] backend. Our experiments were run on Linux

16.04.10 with Intel(R) Xeon(R) CPU E5-2678 v3@2.50GHz

TABLE IV
COMPARISON RESULTS WITH CLASSIC AND STATE-OF-THE-ART METHODS

ON HUMAN AND C.ELEGANS DATASETS, RESPECTIVELY.

Measure Negative ratio k-NN RF L2 SVM DeepCPI GraphCPI

1 0.860 0.940 0.911 0.910 0.970 0.973
AUC 3 0.904 0.954 0.920 0.942 0.950 0.983

5 0.913 0.967 0.920 0.951 0.970 0.983
1 0.798 0.861 0.891 0.966 0.923 0.940

precision 3 0.716 0.847 0.837 0.969 0.949 0.898
5 0.684 0.830 0.804 0.969 0.969 0.886
1 0.927 0.897 0.913 0.950 0.918 0.890

recall 3 0.882 0.824 0.773 0.883 0.913 0.892
5 0.844 0.825 0.666 0.861 0.975 0.856

1 0.858 0.902 0.892 0.894 0.978 0.989
AUC 3 0.892 0.926 0.896 0.901 0.971 0.989

5 0.897 0.928 0.906 0.907 0.971 0.994
1 0.801 0.821 0.890 0.785 0.938 0.937

precision 3 0.787 0.836 0.875 0.837 0.916 0.914
5 0.774 0.830 0.863 0.896 0.920 0.930
1 0.827 0.844 0.877 0.818 0.929 0.955

recall 3 0.743 0.705 0.681 0.576 0.921 0.926
5 0.690 0.639 0.582 0.519 0.836 0.937

and GeForce GTX 1080Ti (11GB). Table III shows the main

training parameters, while other omitted parameters were set

to default values.

B. Stability of our framework

To examine the performance when various graph neural

networks are employed, we conducted extensive experiments

based on human and C.elegans datasets with various imbalance

ratios (recall Table II). Figure 3 shows the comparison results

of three methods including GraphCPI GAT, GraphCPI GCN,

and GraphCPI GIN. Note that, as for these methods, the other

parts remain the same, except that they use various neural

networks (GCN, GIN, or GAT).

From this figure, one can see that these methods achieved

good performance in all these three metrics (AUC, precision,

recall) under these benchmark datasets with various imbalance

ratios. These results indicate that (i) our proposed framework

is feasible, and (ii) our proposed framework may have com-

petitiveness (notice: more experimental results reported later

also validate this potential). On the other hand, one can see

that the performance gap among these three methods is very

small, which can be understood from 18 cases (3 metrics × 3

imbalance ratios × 2 datasets), as shown in Figures 3(a)-3(c).

In this regard, it indicates that the stability or robustness of

our framework.

C. Comparing with classic and state-of-the-art methods

Table IV compares our proposed framework with classical

and state-of-the-art methods. In general, GraphCPI GAT out-

performs the classic and state-of-the-art deep learning methods

on 10 out of 18 situations (cf., the last column in the table).

Although SVM achieves some good performance in term

of precision and recall on the human dataset (which is a

relatively small dataset, recall Table II), it performs not well

on the larger dataset C.elegans, and this characteristic is even

more obvious when the number of negative samples increases.

722

(a) AUC (b) precision (c) recall

Fig. 3. Testing the stability of our framework using various GNN models, based on human and C.elegans datasets with various imbalance ratios. Note
that, for short, in this figure the dataset human is shorten as h, and C.elegans is shorten as C; in addition, the method GraphCPI GAT, GraphCPI GIN and
GraphCPI GCN are shorten as GAT, GIN and GCN, respectively.

This is because these classic models (e.g., SVM) heavily rely

on fixed hand-crafted features and the similarity matrices of

compounds and proteins (e.g., PubChem fingerprints and Pfam

domains), which results in poor stability and relatively poor

performance.

On the other hand, when we compared with DeepCPI,

we found that our method has comparable performance to

DeepCPI on human dataset, and particularly it almost fully

dominant in all metrics on the C.elegans dataset. This indicates

that our proposed method is much more robust when the

dataset is large, or even when the dataset is imbalanced.

Meanwhile, this also demonstrates the superiority of our

proposed method.

V. CONCLUSION

In this paper, we proposed an end-to-end framework,

GraphCPI, for predicting compound-protein interaction.

GraphCPI uses the graph representation for compounds and

the embedding representation for proteins. Our framework can

integrate any popular graph neural networks for learning com-

pounds, and it combines with a convolutional neural network

for embedding sequences of proteins. Experimental results

based on benchmark datasets demonstrated its feasibility and

competitiveness, compared with the competitors.

ACKNOWLEDGMENT

We thank anonymous reviewers very much for their efforts

in evaluating our paper. This work was supported in part by

the National Key R&D Program of China (2018YFB0204100),

in part by the NSFC (No. 61602166, U1811264, U1501252,

U1611264, U1711261, U1711262, U1711263, 61972425), in

part by the Key R&D Program of Guangdong Province (No.

2018B010107005, 2019B010120001).

REFERENCES

[1] Michael J Keiser, Vincent Setola, John J Irwin, Christian Laggner,
Atheir I Abbas, Sandra J Hufeisen, Niels H Jensen, Michael B Kuijer,
Roberto C Matos, Thuy B Tran, et al. Predicting new molecular targets
for known drugs. Nature, 462(7270):175, 2009.

[2] Zoya Khalid and Osman Ugur Sezerman. Prediction of hiv drug
resistance by combining sequence and structural properties. TCBB,
15(3):966–973, 2018.

[3] Pengwei Hu, Zhu-Hong You, Tiantian He, Shaochun Li, Shuhang Gu,
and Keith CC Chan. Learning latent patterns in molecular data for
explainable drug side effects prediction. In BIBM, pages 1163–1169,
2018.

[4] Dhanya Sridhar, Shobeir Fakhraei, and Lise Getoor. A probabilistic ap-
proach for collective similarity-based drug–drug interaction prediction.
Bioinformatics, 32(20):3175–3182, 2016.

[5] Zhe Quan, Zhi-Jie Wang, Yuquan Le, Bin Yao, Kenli Li, and Jian
Yin. An efficient framework for sentence similarity modeling. TASLP,
27(4):853–865, 2019.

[6] Hui Liu, Jianjiang Sun, Jihong Guan, Jie Zheng, and Shuigeng Zhou.
Improving compound–protein interaction prediction by building up
highly credible negative samples. Bioinformatics, 31(12):i221–i229,
2015.

[7] Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed
representation of biological sequences for deep proteomics and ge-
nomics. PloS one, 10(11):e0141287, 2015.

[8] Masashi Tsubaki, Kentaro Tomii, and Jun Sese. Compound–protein
interaction prediction with end-to-end learning of neural networks for
graphs and sequences. Bioinformatics, 35(2):309–318, 2018.

[9] Kevin Bleakley and Yoshihiro Yamanishi. Supervised prediction of
drug–target interactions using bipartite local models. Bioinformatics,
25(18):2397–2403, 2009.

[10] Jian-Ping Mei, Chee-Keong Kwoh, Peng Yang, Xiao-Li Li, and Jie
Zheng. Drug-target interaction prediction by learning from local in-
formation and neighbors. Bioinformatics, 29(2):238–245, 2012.

[11] Lingwei Xie, Zhongnan Zhang, Song He, Xiaochen Bo, and Xinyu Song.
Drug-target interaction prediction with a deep-learning-based model. In
BIBM, pages 469–476, 2017.

[12] Nobuaki Yasuo, Nakashima Yusuke, and Masakazu Sekijima. Code-dti:
Collaborative deep learning-based drug-target interaction prediction. In
BIBM, pages 792–797, 2018.

[13] Fangping Wan, Lixiang Hong, An Xiao, Tao Jiang, and Jianyang Zeng.
Neodti: neural integration of neighbor information from a heterogeneous
network for discovering new drug–target interactions. Bioinformatics,
35(1):104–111, 2018.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In NIPS, pages 3111–3119, 2013.

[15] David Weininger. Smiles, a chemical language and information system.
1. introduction to methodology and encoding rules. Journal of chemical
information and computer sciences, 28(1):31–36, 1988.

[16] Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006.

[17] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In ICLR, 2017.

[18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. In ICLR,
2018.

[19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In ICLR, 2019.

[20] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In ICML, pages 807–814, 2010.

[21] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalua-
tion of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

[22] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, pages 265–283, 2016.

