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Abstract

Molecular representations play critical roles in researching drug design and properties, and effective methods are beneficial
to assisting in the calculation of molecules and solving related problem in drug discovery. In previous years, most of the
traditional molecular representations are based on hand-crafted features and rely heavily on biological experimentations,
which are often costly and time consuming. However, recent researches achieve promising results using machine learning
on various domains. In this article, we present a novel method named Smi2Vec-BiGRU that is designed for learning atoms
and solving the single- and multitask binary classification problems in the field of drug discovery, which are the basic and
also key problems in this field. Specifically, our approach transforms the molecule data in the SMILES format into a set of
sample vectors and then feeds them into the bidirectional gated recurrent unit neural networks for training, which learns
low-dimensional vector representations for molecular drug. We conduct extensive experiments on several widely used
benchmarks including Tox21, SIDER and ClinTox. The experimental results show that our approach can achieve
state-of-the-art performance on these benchmarking datasets, demonstrating the feasibility and competitiveness of our
proposed approach.
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Introduction
Data-driven analysis plays a crucial role in many biological
and chemical applications, such as molecule modeling and
chemical property prediction [1, 2]. With the rapid development
of machine learning techniques [3], in recent years researchers
in the fields of bioinformatics and cheminformatics have
attempted to utilize machine learning methods for molecule

modeling, chemical property prediction, protein–protein inter-
actions biology analysis and so on [4–7].

As we know,simplified molecular input line entry system [8]
(SMILES) strings are usually used to represent and store molecule
datasets, and they are in form of a single-line text consisting
of molecular notations. In the real world, a molecule with an
arbitrary size and shape could be hard to be represented and
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used for machine learning tasks. Users usually need to transform
them into other formats that are easy to be handled by machine
learning algorithms. A widely adopted proposal is to use hand-
crafted features like extended connectivity fingerprints (ECFP)
[9], Coulomb matrix [10], graph-like structure [11] and so on.
Such a process is usually called ‘featurization’. The transformed
data (or featurization data) is usually used as the input and
fed into the interface of machine learning methods, such as
‘random forest’ (RF), ‘multilayer perception’ and so on [12]. These
featurization methods are also called ‘2D’ molecular descriptors
that try to extract relevant structural features derived from the
molecular graph.

ECFP [9], as one of the most common representations in the
above class, is referred to as the circular or Morgan fingerprints.
In brief, each atom is firstly preprocessed to be assigned an
integer identifier at the initial stage, and ‘a bag of fragments’ is
constructed by iteratively expanding outward along bonds and
then is hashed into a fixed-length representation or fingerprint
after a duplicate identifier removal stage. The Coulomb Matrix
proposed by [10] is another representation, which encodes
information by use of the atomic self-energies and internuclear
Coulomb repulsion operator. In addition, graph-like structure,
state-of-the-art method appeared in recent years, computes
an initial feature vector and a neighbor list for each atom. All
methods mentioned above need a preprocessing of the chem-
ical software named ‘RDKit’, and some of them are computation-
ally complicated. Therefore, it is meaningful to develop better
methods, in a novel prospective, for learning molecular features.

On the other hand, owing to the success of solving a wide
range of machine learning problems by the artificial neural
networks [13], recently, recurrent neural networks including long
short-term memory (LSTM) [14], gated recurrent unit (GRU) [15]
and their variants have emerged as powerful generative models
in various domains including natural language processing (NLP)
[16, 17] and image processing [18]. These lines of models regard
the input data as sequential lists, and they are very suitable for
solving time-dependent tasks like natural language understand-
ing [19]. In the meanwhile, as shown in [20], the Atom2Vec [21]
can learn the basic properties of atoms and is used to discover
the periodic table of the elements.

Motivated by the remarkable achievements mentioned
above, in this paper we attempt to develop a novel approach
that merges the merits of the above techniques to learn low-
dimensional vector representation for molecule and is designed
for solving the single-task and multitask binary classification
problems in the field of drug discovery. Such problems are the
basic and also key problems in this field, since many other
tasks [e.g. drug–target interactions (DTIs) and protein–protein
interactions] significantly rely on the quality of the classification
result. Generally, our approach first transforms the molecule
data in the SMILES format into a set of sample vectors via a
representation method named ‘Smi2Vec’; meanwhile, it divides
the molecule in SMILES format into atoms by spaces and extracts
the atomic group, which may consists of symbols and numbers.
These atoms are then initially encoded by one-hot encoding,
which allows us to transform atoms into a specific vectors
with some certain dimensions. Then it uses a manner similar
to word2vec [21] to extract the sample vectors by training
the specific vectors previously obtained. These vectors are
then sliced together and fed into the embedding layer of our
neural network. To extract high-dimensional features, in the
embedding layer a large atomic matrix is constructed, which is
convenient for model training in the latter steps. The extracted
features are then trained, and finally the trained samples are

sent to a classifier (e.g. ‘sigmoid’) for single- and multitask
binary classification or property prediction. In summary, the
main contributions of this paper are as follows:

1. We present a novel approach named Smi2Vec-BiGRU that
is designed for learning atoms and solving the single- and
multitask binary classification problems in the field of drug
discovery. Unlike other representation methods, our method
transforms molecules in the SMILES format into atom vec-
tors, and it takes measures to extract the atomic groups
from the molecules, which are used as the heavy atoms
to better represent the structural information in molecules.
Meanwhile, it leverages a powerful model, bidirectional GRU
(BiGRU) neural network, which is initially developed for solv-
ing problems in NLP and image processing, to train the sam-
ple vectors embedded in the atomic matrix.

2. We conduct extensive experiments based on several widely
used molecule datasets to evaluate the performance of our
proposed method. The experimental results indicate that,
for the single- and multitask binary classification problems
in the field of drug discovery, our proposed approach can
achieve competitive performance, compared against classic
and state-of-the-art methods.

The rest of the paper is organized as follows. Section 2
reviews prior works most related to ours. Section 3 presents
our approach; for the completeness of this paper, the LSTM
neural network-based model, appeared in the preliminary
version [22], is also covered. Section 4 analyzes and discusses
the experimental results. Section 5 concludes this paper.

Related work
Molecular representation

Molecular representation is diverse. The main molecular repre-
sentation methods at present are ECFP [9], Coulomb matrix [10],
graph-like structure [11] and so on. Recently, deep neural net-
work (DNN) models have opened up new avenues for modeling
SMILES strings as a language model. As shown in [20], Atom2Vec
can learn the basic properties of atoms. Our work is inspired by
theirs; yet, it is different from theirs. In that paper the methods
and experiments are used to discover the periodic table of the
elements. In addition, they mainly focused on the principle
explanation of atom representation, while related model designs
are not covered. Another unsupervised approach, named condi-
tional diversity networks [23], also transformed SMILES strings
into vectors, while the detailed steps are not covered. More-
over, there are several studies addressing deep learning-based
embedding for representation of SMILES string. For example,
Kushner et al. [24] proposed a variational autoencoder (VAE), in
which data is represented as a parse tree from a context-free
grammar. Further, Jin et al. [25] presented a junction tree VAE to
generate molecular graphs that allows to incrementally expand
molecules at every step. Meanwhile, Gomez et al. [26] reported an
autoencoder to convert discrete representations of molecules to
and from a multidimensional continuous representation. This
line of works paid more attention on the generation of molecule
and drug instead of the tasks mentioned in this paper.

Drug prediction and interaction

Our work is also related to drug discovery or prediction including
adverse drug events (ADEs), drug reaction effects (DREs), drug–
drug interactions (DDIs), DTIs, in silico drug repurposing and so
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on. For example, Page et al. [27] identified the ADEs by relational
learning. In addition, several methods proposed by [28] are for
extracting DREs from forum posts and tweets. In [29], a network-
based deep learning approach ‘deepDR’ was proposed special-
ized for in silico drug repurposing. Cheng et al. [30] developed a
comprehensive source and free tool for assessment of chemical
admet properties. Xiao et al. [31] provided the efficient solutions
for the real-world DRE prediction and cast the DRE–drug relation
structure into a three-layer hierarchical Bayesian model. Xiang
et al. [32] proposed a naive Bayesian model that was constructed
on a gene–adverse drug reaction (ADR) network for the rapid
assessment of clinical ADRs with the frequency estimation. As
for the adverse DDIs, most of methods focused on the binary
prediction (with or without DDI). Cheng et al. [33] proposed a
network-based method to identify clinically efficacious drug
combinations for hypertension and cancer. Warmuth et al. [34]
used the active learning techniques for selecting the succes-
sive batches and adopted three selection strategies in the drug
discovery process. Ma et al. [35] made better trade-off between
accuracy and interpretability. Ezzat et al. [36] proposed two kinds
of matrix factorization approaches that adopt the regularization
technique to learn the manifolds and developed a preprocessing
step to enhance predictions. Besides, Cheng et al. [37] developed
a inhibitor predicting models for five major CYP isoforms by
using a combined classifier algorithm. Yu et al. [38] provided
an integrative framework to predict drugs for hepatocellular
carcinoma based on multi-source random walk (PD-MRW). And
Khalid and Sezerman [39] combined both sequence and struc-
tural features for predicting HIV resistance by applying support
vector machine (SVM) and random forests classifiers. Our work
is different from this line of works in several points at least: (i)
we use a different representation method for learning atoms in
molecules; and (ii) we use the BiGRU neural networks to train
the sample vectors, instead of some traditional methods such as
SVM and RF.

DNN-based methods

In the past decade, DNNs have gained remarkable achievements
in various research domains. DNNs can learn the potential regu-
lar pattern to obtain better performance analysis and prediction,
by training a large number of datasets [40–42]. Different from
other domains such as NLP and image processing, DNN in drug

discovery depends heavily on molecular featurization [43, 44].
Moreover, it also relies on the prediction of molecular property
and activity [11, 45–47]. Our work shares two common features
with this line of works: (i) both (i.e. our method and this line
of methods) discussed the issues related to drug discovery; and
(ii) both are belonged to the DNN-based methods. Nevertheless,
our work is different from theirs in two points at least: (i) they
mainly focused on developing techniques for other tasks instead
of single and multitask binary classification; and (ii) the BiGRU
recurrent neural networks are not covered in their works.

This article provides a more complete understanding of
learning atoms first presented in the conference version
[22], providing additional insights, analysis and evaluation.
Furthermore, we improve the original framework in two aspects.
First, we propose the Smi2Vec, which replaces the format
transformer in the original framework. Compared against format
transformer, here Smi2Vec adds the notion of atomic group,
which originates from the consideration of the structural infor-
mation in molecules. Second, we propose using the BiGRU neural
network to train sample vectors, instead of using the LSTM
recurrent neural network presented in the original framework.
The experimental results show that the refined method is much
more efficient than that presented in the conference version.

Method
In this section, we first give an overview of our approach and
then present each part of our approach in detail.

Overview

The architecture of our approach is as shown in Figure 1. The
whole framework mainly consists of two parts: Smi2Vec and
BiGRU neural network. Briefly, the molecule data in the format
of SMILES is first processed by a representation method named
‘Smi2Vec’, which transforms the molecule data in the SMILES
format into a set of sample vectors. These vectors are then sliced
together based on some rules, which are used to construct the
atomic matrix as the input of BiGRU neural network, and then
the atomic matrix is to be trained by using the BiGRU neural
networks. The output of the BiGRU neural networks shall be
processed by a classifier, which is used to generate the output
label for task classification.

Figure 1. The specific process of Smi2Vec and the composition of BiGRU neural network.
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Figure 2. Sketch of ‘Smi2Vec’.

Smi2Vec

The preliminaries

Choosing a proper molecular representation is at the heart of
computer-based chemical analysis, and it is also very important
for drug discovery and prediction, since one may need to analyze
and predict properties of drug with the same or similar molecule
representation. In the real world, most biological and chemical
datasets are in the format of SMILES string. The SIMILES string
of a unique molecule is a single-line text representation. For
example, a molecule is encoded as a linearly arranged string
si = s1, s2, ...si(i = 1, 2, ..., n). The encoding rules of SMILES
follows the strict grammars, which consist of symbols indicating
element types, bond values, and the start and terminal locations
for ring closures and branching components.

SMILES strings are powerful for representing and storing the
molecule data. To apply machine learning methods for learning
advanced features, we need to transform them into a new format
suitable for utilization. Take ‘Aldicarb’ and its SMILES string
CC(/C = N/OC(NC) = O)(C)SC as an example; one can convert
it by RDKit [48] software into a graph-structured representa-
tion, which can be later used for learning features via graph
convolutions.

The proposed representation method

Sketch of Smi2Vec. Instead of using chemical software such
as RDKit to transform SMILES strings, we adopt another man-
ner that directly transforms them into atom vectors. Briefly,
molecule in SMILES format is first preprocessed as an indepen-
dent atom or symbol (also served as atom in Smi2Vec), and then
they are expressed as a high-dimensional vectors, which are
sample vectors and also machine-readable characters or strings.
Figure 2 illustrates the sketch of this representation method.
Next, we present the details.
The detailed steps of Smil2Vec. As we known, in NLP, the sen-
tences are processed using word vectors. We observe that SMILES
is a linguistic grammar that employs an alphabet of characters
to describe the molecule, and each element or symbol has an
associated definition in SMILES. In our preliminary version [22],

we used the similar way in NLP to handle the SMILES strings.
Specifically, we used the ‘format transformer’ to process it; more
details can be found in [22]. In this article, we further revise it by
adding the notion of ‘atomic group’. This idea is originated from
the consideration of the structural information of the molecule.
Generally, for a patch of molecules si = s1, s2, ... si(i = 1, 2, ..., n)

in the format of SMILES, we divide them into a series of atoms
by space, which is similar to the word segmentation process
in NLP. Each single atom xi may consist of different symbols
and numbers, such as ‘(’, ‘)’, ‘[’, ‘]’, ‘@’ and so on. We realize
that some atomic groups in the molecule appear in a special
way such as ‘[C@H]’. For the ‘atomic groups’ like the above,
we ‘treat’ them and/or its variants as ‘separate biological word’
(i.e. atoms and symbols). Then, for all preprocessed atoms, we
initially encode them by ‘one-hot encoding’ [49], which allows
us to transform atoms into a specific vectors vi(i = 1, 2...n)

with some certain dimensions. Since these specific vectors have
less feature information, we need to construct a mapping from
specific vectors to sample vectors. Here we use a manner similar
to ‘word2vec’ [21] to ‘extract’ the sample vectors (by pretraining
the specific vectors previously obtained).

Before the extract process (i.e. training the specific vectors),
we suggest a technique, named ‘simplified feature learning’
(SFL), to accelerate the extraction of atom features. This tech-
nique is based on the follow observation: molecules in SMILES
format consist of numbers and characters, while some symbols
and numbers may represent repetitive information, which may
cause the complicated training process. For example, Toluene is
denoted as Cc1ccccc1 in SMILES, a benzene ring is represented
by number ‘1’, while c and C denote aromatic and aliphatic car-
bon atoms, which essentially imply the existence of a benzene
ring. Therefore, our SFL ignores the assigned numbers in SMILE
string, which are redundant feature information, since they has
been already expressed. Instead, our SFL adds the occurrence
frequency of each element (as the additional information) to
the specific vector. These strategies ensure the simplicity and
integrity of the feature information.

After the sample vectors are extracted, they shall then be
sliced together and used to construct the ‘atomic matrix’ as the
input of the BiGRU neural network. Here the atomic matrix is
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Algorithm 1 Smi2Vec

Input: a molecule s in the format of SMILES, dictionary D,
atom vector s, fixed length m, vector dimension d.
Output: atom matrix A
1: atom set {xj|1 ≤ j < |s|} ←− split(s)
2: for j=1 to m do
3: if xj /∈ dictionary then
4: embedding vector aj ←− randomly generated value ∈ �d

5: else
6: aj

map←−− xj // by using D
7: end for
8: atom matrix A ←− ∑m

j=1 aj

9: return A ∈ �m×d

convenient for model training in the later steps. The size of the
matrix depends on the product of the batch size and the limited
size (i.e. the dimension of an atom vector). Note that every vector
vi is encoded using an N-bit status register; each state has its
own register bit, and at any time only one of them is valid. The
construction process of an atomic matrix is shown in Figure 3. It
is based on the following principle: the element vi located in the
center of window k will be output object, and the other elements
are the input ones [for example, see Figure 2 again, if atoms v∗

i (i =
1, 2, ..., 22) located in window k are the inputs, then the atom
vi(i = 11) located in the central of window k will be the output].
In this way, it guarantees the output transmission channel unob-
structed and ordered. In addition, each vector vi initially encoded
by one-hot encoding shall automatically find the corresponding
vector in the pretrained atomic list, until the mapping process
completes. For ease of reference, Algorithm 1 summarizes the
detailed steps of the Smi2Vec. In general, A SMILES string with
fixed length m is divided into a separate atom or symbol (Line 1).
Then it ‘maps’ atom by looking up each of the atom embeddings
from the pretrained dictionary, while it randomly generates
values if it is not in dictionary (Line 2-7). Finally, it constructs an
atom matrix A by aggregating embedding vectors (Line 8), where
each line represents the pretrained vector of an atom.

Recurrent neural networks

LSTM neural network

Similar to the methods for dealing with semantics similarity
in NLP, our preliminary version [22] adopts the LSTM recurrent

Figure 3. The workflow of atomic matrix.

neural network. The LSTM is an alternative RNN, it uses the
so-called ‘memory cell’ (controlled by input, output and forget
gates) to replace the ‘conventional neuron’ in order to overcome
the vanishing gradient problem of traditional RNNs. In short,
LSTM is a special class of RNN that is capable of capturing long
sentence relationships.

Owing to the existence of the gate of the adopted model, we
can learn and recognize the information needed to be retained or
forgotten. Each atom including special symbols (e.g. = and ≡) has
a corresponding time step xt (t=1,2...n). The intermediate state
associated with each time step is referred to as a hidden state
vector ht. This hidden state vector is used to encapsulate and
summarize all the information appeared in the previous time
step. The hidden state is a function of the current atom vector
and the hidden state vector of the previous step. The hidden
state vector ht and the output gate vector ot is computed as
follows:

{
ht = σ(WHht−1 + WXxt + bh)

ot = σ(WYht + bo),
(1)

where WX represents the weight matrix between the input
and hidden layer; WH represents the recurrent weight matrix
between the hidden layer and itself; WY represents the weight
matrix between the hidden and output layers; bh and bo are bias
in the hidden and output layers, respectively.

The value of WH stays the same in all time steps, but the
value of WX changes in every input. The size of these values
is not only affected by the current vector, but also affected by
the previously hidden layer. It is easily observed that the value
of ht will vary when other elements such as xt changes, the
current hidden state vector is more concerned with the sum of
the previous atom vectors than the current one. See Figure 4(a)
for an illustration of the LSTM unit.

BiGRU neural network

Although LSTM recurrent neural network and its variants have
made great strides in NLP, especially text classification tasks,
we cannot ignore its limitations, such as too many parameters,
complicated internal calculations and so on. Besides LSTMs,
another type of recurrent unit used to deal with variable-length
sequences is the GRU, which was proposed in [50]. Next, we
first briefly discuss this technique for ease of understanding the
BiGRU adopted in our paper.

The main idea of GRU is to make every recurrent unit to
adaptively capture dependencies of different time scales. The
GRU model can keep the same performance of LSTM and has
advantages of simpler structure, fewer parameters and better
convergence. Similar to the LSTM unit, it only composes of an
update gate and a reset gate, without having a separate memory
cells.

Let X = (x1, x2, ..., xt) be the input sequence, where xt ∈ �d.
The current hidden state hi

t of each GRU unit at time t is a
linear interpolation between the previous hidden state hi

t−1 and

the candidate hidden state
∼
h i

t. The current hidden state hi
t, the

candidate hidden state
∼
h i

t, the update gate zi
t and the reset gate

ri
t are computed as follows [51]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hi
t = (1 − zi

t)h
i
t−1 + zi

t

∼
h i

t∼
h i

t = �(Wxt + U(rt 	 ht−1))
i

zi
t = σ(WZxt + UZht−1)

i

ri
t = σ(WRxt + URht−1)

i,

(2)
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Figure 4. (A). i, f and o are the input, forget and output gate, respectively. c and∼
c represent the memory cell and the new memory cell content, respectively. (B).

r and z are reset and update gates, and h and
∼
h are the activation and the next

activation.

Figure 5. The main architecture of BiGRU neural network. Recurrent neural

networks with GRU units pick up information along the forward and backward

propagation. Take C[C@@H](O)C(=O)O as an example to illustrate the principle of

our approach.

where � and σ represent different activation functions (i.e. ‘tanh’
and ‘Sigmoid’), W, WZ, WR, U, UZ and UR denote the corresponding
weight coefficients. An update gate zi

t regulates how much the
recurrent unit computes its hidden state. Similar to the LSTM
unit, this computation procedure is involved with a linear sum
between the current state and the following calculation state.
And rt represents a set of reset gates; 	 is an element-wise
multiplication. When rt is close to 0, the reset gate makes the
recurrent unit allow to forget the previously computation state.
See Figure 4(b) for an illustration of the GRU.

Due to the unidirectional nature of GRU, it is impossible to
encode information from the back to the front. This may affect
the acquisition of partial structural information of molecular
compound in the format of SMILES string. In the fine-grained
classification problem, such as drug performance, biological
activity and other classification tasks, it needs to pay more
attention on the interaction between different atoms, atomic
groups and inter-structural information. Therefore, in this paper
we adopt a BiGRU [52], instead of using directly the GRU neural
network mentioned earlier. See Figure 5 for an illustration of
BiGRU neural network. The BiGRU processes the input sequences
in both directions with two sublayers, in order to capture the
full input molecule in the format of SMILES string. These two

Table 1. The setting of main parameters in our proposed model

Description Value

The number of GRU cell in the hidden layer 200
‘Loss’ Function binary_crossentropy
optimizer adam
The fixed length of SMILES sequence 80
Spatial 1D version of dropout 0.2
Batch_size 128
Dimension of a vector 100
blackEpoch black100
blackNumber of words for pretraining black10 000
blackBatch size black128

Note: other omitted parameters are set to default values.

sublayers compute forward and backward hidden sequences
→
ht and

←
ht, respectively. Then, they are combined to compute

the current hidden state ht and the output of BiGRU ot. More
specifically, we have the following:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

→
ht= GRU(xt,

→
ht−1)

←
ht= GRU(xt,

←
ht−1)

ht = WT
→
ht + WV

←
ht

ot = �(WOht)

(3)

where GRU function represents the nonlinear transformation
of the input atom vectors, which are encoded into the corre-
sponding hidden state of GRU; WT and WV represent the weight

coefficients corresponding to the forward hidden state
→
ht and the

reverse hidden state
←
ht in the bidirectional GRU, respectively; WO

is the weight coefficient between the hidden and output layers.
Notice that, even if the directions are inconsistent, there is no

impact on the value between
→
ht and

←
ht.

Finally, the output of BiGRU neural network is sent to a clas-
sifier for task classification or property prediction. This way, the
designed approach with learnable ability can predict whether
the tested molecule is toxic or not. More specifically, this paper
uses the ‘sigmoid’ function to calculate the resulting probability

of the classification yi and compares it with the original label
∼
yi.

The objective function Loss and yi are computed as follows:

{
Loss = − 1

N

∑N
i=0(yilogyi + (1 − ∼

yi)log(1 − yi)

yi = sigmoid(Wiht + bi),
(4)

where Wi and bi denote the weight coefficient and bias in the
output layer, respectively; N is the number of batch size.

Experiment
In this section, we compare our proposed method with the
competitors based on several commonly used molecule datasets
from the MoleculeNet Benchmark [53]. Note that some datasets
are single-task datasets while others are multitask datasets
(more detailed descriptions shall be discussed later). In our
experiments, the output of the final layer is changed according
to the number of tasks, while the other steps in our approach
are applied to all tested datasets. Our system was trained based
on Tensorflow [54], and we used the Adam algorithm [55] to
optimize all the parameters of the adopted neural networks. The
specific parameter settings related to our model are shown in
Table 1.
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Data description

The datasets we used are BACE, Blood–Brain Barrier Penetra-
tion (BBBP), Toxicology in the 21st Century (Tox21), Side Effect
Resource (SIDER), ToxCast and ClinTox. These datasets con-
sist of a mix of physical and nonphysical properties, used for
single-task and/or multitask binary classification problems. The
type of objects/items/entities of these datasets are shown in
Table 2. In these datasets, SMILES strings are used to encode
input molecules. The details of these data are as follows (https://
github.com/deepchem/deepchem):

• BACE. The BACE dataset [56] provides quantitative and quali-
tative binding results and is a collection of 1522 compounds
with their 2D structures and binary labels.

• BBBP. The BBBP dataset [57] concentrates on the model-
ing and prediction of the barrier permeability. This dataset
includes binary labels for over 2000 compounds on their
permeability properties.

• HIV. The HIV dataset [58] was provided by the Drug Therapeu-
tics Program AIDS Antiviral Screen, which tested the ability
to inhibit HIV replication for nearly 41 913 compounds. In
general, screening results were evaluated and divided into
three subsets; they are confirmed inactive (CI), confirmed
active (CA) and confirmed moderately active (CM). Here, the
latter two labels were combined as active subset to make a
classification task between inactive (CI) and active (CA and
CM) subsets.

• Tox21. The Tox21 dataset [59] contains qualitative toxicity
measurements for 8014 compounds on 12 different targets,
including nuclear receptors and stress response pathways.

• SIDER. The SIDER [60, 61] is a dataset of marked drugs and
ADRs; it contains 1427 compounds on 27 system organ
classes.

• ToxCast. ToxCast [62] is another data collection that provides
toxicology data for a large library of compounds, based on in
vitro high-throughput screening. It contains 617 classification
tasks for 8615 compounds.

• ClinTox. The ClinTox dataset [63, 64] contains 2 classification
tasks for 1491 drug compounds with known chemical struc-
tures: (i) clinical trial toxicity (or absence of toxicity) and (ii)
Food and Drug Administration approval status.

It is well known that conventional machine learning meth-
ods require datasets to be split into training/validating/testing
subsets for benchmark. Usually, models are trained by training
sets; hyperparameters are tuned through validating sets; and
testing sets are used for evaluating models/approaches/systems.
In our experiments we used two split methods mentioned in
[53], i.e. ‘random splitting’ and ‘stratified random splitting’. In
brief, random splitting method randomly splits dataset into the

train/validate/test subsets. In contrast, the stratified random
splitting method first sorts data points in the increasing order
according to their label values, and then it splits the dataset into
train/validate/test subsets by ensuring the same proportion of
positive and negative samples in each subset. Typically, when
there is some bias, random splitting is used for data splitting.
In contrast, stratified random splitting is used. Typically, when
there is some bias, random splitting is used for data splitting.
In contrast, stratified random splitting ensures that each subset
contains the full range of labels.

To keep the same benchmark, in our experiments random
and stratified (random) split methods with an 8/1/1 ratio [here
the 8/1/1 ratio means that 8/10, 1/10 and 1/10 of the corre-
sponding dataset (e.g. ‘BACE’) are used as the train, validate and
test set, respectively] was adopted for BBBP and BACE datasets,
while only stratified (random) split method was adopted for
Tox21, ClinTox, SIDER and ToxCast datasets (since random split
exhibits poor AUC-ROC performance for all these methods).
When positive and negative samples are severely unbalanced,
oversampling was used to maintain an appropriate ratio in the
training set.

Evaluation metrics

We report two standard evaluation measures commonly used in
classification or prediction tasks. The first metric is the ‘accu-
racy’, which is used to measure the correct proportion of classi-
fication. It is computed as

Accuracy = TP + TN
TP + FP + FN + TN

where TP, TN, FP and FN denote the true positive, true negative,
false positive and false negative value, respectively. The second
metric is the area under the curve score of receiver operating
characteristic curve (ROC-AUC) [53], which is extracted based
on the validation and test sets (larger is better). We used 5-fold
cross-validation for the evaluation on all these datasets.

Baselines

We compared our method with the following solutions (includ-
ing the one presented in the preliminary version [22]):

1. Basic Models: these models include LR (logistic regression)
[65], RF [66], SVM [67], DT (decision tree) [68] and KNN (K
nearest neighbor) [69].

2. ECFP: extended-connectivity fingerprints, known as ECFPs [9],
are a class of topological fingerprints for molecular character-
ization. Here, ECFP_4 was adopted in the experiments.

Table 2. The detailed description of selected datasets

Dataset Category Data type Tasks Task type Compound Metric

BACE Biophysics SMILES 1 Binary classification 1522 ROC-AUC
BBBP Physiology SMILES 1 Binary classification 2053 ROC-AUC
HIV Biophysics SMILES 1 Binary classification 41 913 ROC-AUC
Tox21 Physiology SMILES 12 Binary classification 8014 ROC-AUC
SIDER Physiology SMILES 27 Binary classification 1427 ROC-AUC
ToxCast Physiology SMILES 617 Binary classification 8615 ROC-AUC
ClinTox Physiology SMILES 2 Binary classification 1491 ROC-AUC
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Table 3. ROC-AUC scores of various approaches in BACE, BBBP and HIV datasets

ModelDataset BACE BBBP HIV

Random Stratified Random Stratified Random Stratified

Test Validate Test Validate Test VValidate Test Validate Test Validate Test Validate
LR 0.6888 0.6040 0.6412 0.6603 0.7374 0.6819 0.7277 0.8004 0.5000 0.5000 0.5000 0.4999
RF (n=10) 0.7662 0.7634 0.7488 0.7521 0.8106 0.7141 0.7358 0.8074 0.5650 0.5475 0.5524 0.5575
SVM 0.6045 0.5187 0.5279 0.5400 0.6700 0.5573 0.5874 0.6193 0.5000 0.5000 0.5000 0.5000
KNN 0.7598 0.7498 0.7603 0.7335 0.7456 0.8049 0.8142 0.6718 0.6023 0.5678 0.5736 0.5635
DT 0.6863 0.7272 0.7320 0.7416 0.7652 0.6973 0.7552 0.7692 0.5945 0.5839 0.5893 0.5894
Smi2Vec∗+LSTM 0.8144 0.8619 0.7628 0.7330 0.8320 0.8855 0.8759 0.9356 0.7892 0.8103 0.8828 0.8820
Smi2Vec+BiGRU 0.8440 0.8584 0.8539 0.8506 0.8886 0.8584 0.9457 0.9484 0.8955 0.9163 0.9117 0.9225

Table 4. ROC-AUC scores of each task in Tox21. The results are based on the stratified split method

TaskModel RF SVM Smi2Vec∗-LSTM Smi2Vec-BiGRU

Test Validate Test Validate Test Validate Test Validate

NR-AR 0.6732 0.6730 0.4951 0.5098 0.6914 0.6909 0.7114 0.7713
NR-AR-LBD 0.6384 0.5825 0.5216 0.5208 0.7477 0.7228 0.8243 0.8442
NR-AhR 0.5980 0.6076 0.6396 0.6160 0.6780 0.6698 0.8793 0.8751
NR-Aromatase 0.5500 0.5798 0.5458 0.5486 0.4964 0.4991 0.6985 0.8241
NR-ER 0.5507 0.5433 0.5000 0.4992 0.6231 0.5546 0.7360 0.7085
NR-ER-LBD 0.5170 0.5931 0.5216 0.5436 0.5308 0.5256 0.8675 0.7922
NR-PPAR-gamma 0.5263 0.4984 0.5074 0.4944 0.5659 0.5000 0.7494 0.7085
SR-ARE 0.5568 0.5562 0.6355 0.5804 0.6414 0.5901 0.7611 0.7945
SR-ATAD5 0.5348 0.5356 0.4931 0.4982 0.5000 0.5171 0.7632 0.7909
SR-HSE 0.5124 0.5107 0.5161 0.4986 0.6120 0.6381 0.7845 0.7540
SR-MMP 0.6862 0.6809 0.6489 0.6596 0.7425 0.7438 0.8599 0.8846
SR-p53 0.5138 0.5310 0.4931 0.4982 0.5180 0.5149 0.7321 0.7896

3. graphconv: it was proposed in [70]. This method implemented
convolution with a spectral filter formed by linear Bspline
interpolation. It is the first work to formulate an analogy of
CNN on graph structure, instead of grid or others in Euclidean
domains.

4. NFP: neural fingerprint, known as NFP, which was proposed
in [11]. It implemented convolutional nets that can take
molecular graphs of arbitrary size as the input and were
designed to be a drop-in replacement for Morgan or ECFP
fingerprints.

5. GCN: we referred to the graph CNN with K-localized spectral
filter as GCN from [71], which makes great contributions to
the development of graph-like structure neural networks.

6. AGCN: a novel spectral graph convolution layer, named
spectral graph convolution layer with graph Laplacian
learning [72], which works with adaptive graphs. This method
achieved the state-of-the-art results on many molecular
datasets.

7. Smi2Vec∗-LSTM: the method presented in our preliminary
version [22]. Here the notation ∗ means Smi2Vec∗ is different
from the following Smi2Vec. Specifically, Smil2Vec∗ denotes
a simple processing method that divides atoms into vectors
without considering the positional and structural properties
in molecules.

8. Smi2Vec-BiGRU: this is the refined method presented in this
article. Compared with ‘Smi2Vec∗-LSTM’, the key differences
are as follows: (i) it considers the structure information
among candidate molecule; and (ii) it uses the BiGRU neural
network, instead of LSTM.

Single- and multitask classification on molecular
datasets

Single-task classification. For single-task classification (i.e.
on the BACE, BBBP and HIV datasets), we trained several
machine learning models as baselines on an identical single-
task datasets. Also, for datasets used for testing these baselines,
we used random and stratified splitting methods with an 8/1/1
ratio. The comparison results are shown in Table 3. It can be
seen that our approach generally outperforms these compared
methods on single-task datasets (i.e. BACE, BBBP and HIV).
In particular, compared with the method ‘Smi2Vec∗-LSTM’
presented in the preliminary version, on average our approach
achieves the best results on these three datasets, demonstrating
the competitiveness of our approach. In addition, we observe
that, for these two data splitting methods (i.e. random and
stratified), there is no significant impact on our approach. This
indicates the stability of our approach.
Multi-task classification. In order to comprehensively analyze
the performance of our approach for multi-task classification,
we conducted experiments on each task in Tox21 and SIDER
datasets. In this set of experiments, we mainly show the
results of RF and SVM methods, since they presented better
performance than other baselines for multiple task classifi-
cation. Specifically, there are 12 and 27 tasks for Tox21 and
SIDER, respectively. The compared results on Tox21 are shown
in Table 4. It can be seen that on the whole our approaches
including the previous method (i.e. ‘Smi2Vec∗-LSTM’) show
competitive performance on the Tox21 dataset. Particularly, on
all tasks the improved method (i.e. Smi2Vec-BiGRU) achieves the
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best performance, compared against the method presented in
the preliminary version and also other competitors.

In addition, the results on the SIDER dataset are shown in
Table 5. We can see that, on 25 out of 27 tasks, our approaches
including ‘Smi2Vec∗-LSTM’ achieve the best performance. Note
that, on some tasks the Smi2Vec-GRU is better than Smi2Vec*-
LSTM method, while it is inferior to Smi2Vec*-LSTM on other
tasks. Nevertheless, on most of these tasks (about 80% of the
whole tasks), the Smi2Vec-GRU obtains much more leading
scores, demonstrating its competitiveness.

It is worth mentioning that, although the proposed method
is much more complicate than classic methods (e.g. SVM and
LR) and it generally outperforms these classical methods by
about 0.1 to 0.2, this is a nontrivial performance improvement
in drug discovery community. As will be shown later, other
state-of-the-art methods are also much more complicate than
classic methods, our method achieved similar or even better
performance.

Comparison with graph-like structure methods

We also compared our approach with several state-of-the-
art graph-like structure models proposed recently, including
‘graphconv’, ‘GCN’, ‘NFP’ and ‘AGCN’; see Section 4.3 for their
descriptions. Table 6 shows the comparison results. We observed
that our approach can outperform the former several graph-
like structured models including ‘graphconv’, ‘NFP’ and ‘GCN’
on these tested datasets. Particularly, compared with ‘AGCN’,
the strongest graph-like structured model in the literature,
our method nearly reached the same results on Tox21 and
SIDER, and even improved the ROC-AUC score on ClinTox.
Yet, we have to admit that the performance on ToxCast is
inferior to AGCN. It could be that the ToxCast dataset includes
qualitative results over 600 experiments on 8615 compounds;
as for a binary classification task, it is difficult for Smi2Vec-
GRU to construct an embedding matrix, due to the severe
sparsity.

Table 5. ROC-AUC scores of every task in SIDER. The results are based on the stratified split method

Task RF SVM Smi2Vec∗-LSTM Smi2Vec-BiGRU
Test Validate Test Validate Test Validate Test Validate

Hepatobiliary disorders 0.5654 0.5696 0.5553 0.5733 0.5843 0.6916 0.6504 0.6640
Metabolism and nutrition disorders 0.5490 0.5337 0.5083 0.5091 0.5345 0.5382 0.5998 0.5867
Product issues 0.4906 0.5087 0.5032 0.5000 0.5048 0.5120 0.5662 0.4951
Eye disorders 0.5034 0.4984 0.5071 0.5179 0.5087 0.5260 0.6044 0.6101
Investigations 0.4877 0.5185 0.5014 0.5179 0.5045 0.4917 0.6674 0.6316
Musculoskeletal and connective tissue disorders 0.5180 0.5234 0.5116 0.5111 0.5620 0.5355 0.5533 0.6108
Gastrointestinal disorders 0.5551 0.4962 0.4926 0.5385 0.5564 0.5686 0.6629 0.6295
Social circumstances 0.4828 0.5185 0.4918 0.4958 0.5170 0.5204 0.6089 0.5885
Immune system disorders 0.5558 0.5271 0.5024 0.4950 0.5248 0.5465 0.5770 0.6040
Reproductive system and breast disorders 0.5436 0.5863 0.5601 0.6101 0.5956 0.5689 0.6061 0.6265
Neoplasms benign, malignant and unspecified 0.5363 0.5744 0.5388 0.5676 0.5396 0.5073 0.5818 0.5361
General disorders and administration site conditions 0.4922 0.4962 0.4826 0.4955 0.4929 0.5061 0.5884 0.5750
Endocrine disorders 0.5245 0.5015 0.4920 0.4959 0.5323 0.5301 0.5873 0.6222
Surgical and medical procedures 0.5228 0.5609 0.4955 0.4858 0.4960 0.5000 0.5642 0.5699
Vascular disorders 0.4976 0.4981 0.5036 0.5129 0.5011 0.5132 0.5303 0.6090
Blood and lymphatic system disorders 0.5373 0.5248 0.5036 0.5833 0.5408 0.5869 0.6000 0.6933
Skin and subcutaneous tissue disorders 0.5417 0.5335 0.4959 0.4915 0.5642 0.5407 0.6683 0.6367
Congenital, familial and genetic disorders 0.4713 0.5015 0.4971 0.4950 0.5000 0.5059 0.6084 0.5860
Infections and infestations 0.5139 0.5005 0.4989 0.5135 0.5148 0.5224 0.6621 0.6040
Respiratory, thoracic and mediastinal disorders 0.4893 0.4952 0.5122 0.5238 0.4954 0.5335 0.6250 0.5533
Psychiatric disorders 0.5282 0.5126 0.5073 0.5070 0.5378 0.5168 0.5861 0.5983
Renal and urinary disorders 0.5632 0.5514 0.5137 0.5234 0.5767 0.6394 0.6173 0.5938
Pregnancy, puerperium and perinatal conditions 0.4769 0.4885 0.4962 0.5288 0.4961 0.4885 0.5164 0.5386
Ear and labyrinth disorders 0.5617 0.5781 0.5000 0.4938 0.5012 0.4851 0.6395 0.6158
Cardiac disorders 0.5530 0.5871 0.4899 0.5000 0.5734 0.5104 0.5918 0.6565
Nervous system disorders 0.4890 0.5346 0.5417 0.5147 0.5147 0.5522 0.7350 0.7079
Injury, poisoning and procedural complications 0.5262 0.5333 0.4947 0.5145 0.5315 0.5546 0.5943 0.5461

Table 6. Task-averaged ROC-AUC scores on Tox21, ClinTox, SIDER and ToxCast datasets

Datasets Tox21 ClinTox SIDER ToxCast

Validation Testing Validation Testing Validation Testing Validation Testing

graphconv 0.7105 0.7023 0.7896 0.7069 0.5806 0.5642 0.6497 0.6496
NFP 0.7502 0.7341 0.7356 0.7469 0.6049 0.5525 0.6561 0.6384
GCN 0.7540 0.7481 0.8303 0.7573 0.6085 0.5914 0.6914 0.6739
AGCN 0.7947 0.8016 0.9267 0.8678 0.6112 0.5921 0.7227 0.7033
Ours 0.7948 0.7806 0.9557 0.9779 0.6033 0.6071 0.6621 0.6449
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Figure 6. Performance analysis of ‘Smi2Vec’ and ‘ECFP’ for single and multiple classification tasks: ‘BACE’, four models are evaluated by ROC-AUC score on random

split; ‘HIV’, four models are evaluated by ROC-AUC score on scaffold split; ‘Tox21’ and ‘SIDER’, four models are evaluated by averaged ROC-AUC score on random split.

For ROC-AUC, higher value indicates better performance (to the right). Better viewed in color print.

Figure 7. Performance analysis of ‘Smi2Vec∗’ and ‘Smi2Vec’ for single and multiple classification tasks: ‘BACE’, four models are evaluated by ROC-AUC score on random

split; ‘HIV’, four models are evaluated by ROC-AUC score on scaffold split; ‘Tox21’ and ‘SIDER’, four models are evaluated by averaged ROC-AUC score on random split.

For ROC-AUC, higher value indicates better performance (to the right). Better viewed in color print.

Performance of Smi2Vec

To evaluate the performance of the proposed representation
method, we compared Smi2Vec with ‘ECFP’ and also Smi2Vec*
trained on the same conventional machine learning model; see
Section 4.3 for the description of ‘ECFP’. In the meanwhile, we
tested different tasks including single- and multitask classifi-
cation. The averaged ROC-AUC scores are shown in Figures 6
and 7. From these figures, we found that ‘Smi2Vec’ can nearly
achieve the same performance on all these datasets, compared
against ‘ECFP’. This indicates that our approach, like ECFP, can
also learn the structural relationship between molecules. As for
the HIV dataset, it contains the single task for 41913 compounds;
we used the scaffold splitting that separated structurally differ-
ent molecules into different subsets. Intrinsically, the scaffold
splitting is suitable for ‘ECFP’. Interestingly, we observed that
there is no apparent difference in the experimental results when
‘Smi2Vec’ was used. This essentially implies the good learning
ability of our proposed method. In the meanwhile, compared
with the Smi2Vec* method presented in the preliminary version,
‘Smi2Vec’ keeps almost the same performance, and particularly
it obtained higher ROC-AUC scores for RF and LF on the HIV and
SIDER datasets, respectively.

Summary

We found that Smi2Vec-GRU and the method presented in our
preliminary version are feasible and competitive. Specially, (i) for
the single-task classification, these two methods outperformed
other classic methods such as KNN, DT and SVM on all the
testing datasets; and the improved method, i.e. Smi2Vec-GUR,
performed the best on most of cases. (ii) For the multi-task classi-
fication, the improved method Smi2Vec-GRU outperformed the
best on all the tasks of the Tox21 dataset, compared against the
classic methods and the method presented in our preliminary

version; as for the SIDER dataset, Smi2Vec-GRU and the method
presented in our preliminary version outperformed other classic
methods on 26 out of 27 tasks; particularly, the improved method
Smi2Vec performed the best on about 80% of the whole tasks.
(iii) Our method outperformed most of state-of-the-art graph-
like structure models such as ‘graphconv’, ‘NFP’ and ‘GCN’. Fur-
thermore, we found that the representation method, Smil2Vec,
is feasible for capturing the fine-grained structural properties
of molecule. Specifically, (i) it can nearly achieved the same
performance on all these datasets, compared against the ECFP,
which is a widely-used topological fingerprints for molecular
characterization. (ii) Compared against the Smil2Vec* presented
in our preliminary version, it kept almost the same performance,
and particularly it obtained higher ROC-AUC scores for RF and LF
on the HIV and SIDER datasets, respectively. On the other hand,
we also realized the limitation of our method, i.e. Smi2Vec-GRU.
Specifically, compared against the strongest graph-like struc-
tured model in the literature, i.e. AGCN, although our method
nearly reached the same results on Tox21 and SIDER, and even
improved the ROC-AUC score on ClinTox. However, it is obviously
inferior to AGCN on the ToxCast dataset. This may imply that our
method could be not suitable for the datasets that appear the
severe sparsity.

Discussion and conclusion
In this paper, we have presented an approach, Smi2Vec-BiGRU,
for learning atoms and solving the problem of single- and multi-
task classification in the field of drug discovery. We have con-
ducted extensive experiments based on several widely used
molecule datasets. The experimental results demonstrated the
feasibility and competitiveness of our proposed method. In the
future, we may attempt to (i) further improve our approach
by exploiting some other techniques such as attention mecha-
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nisms, and (ii) solve other related problems in the fields of drug
discovery and bioinformatics.

Key Points
• We present a novel approach named Smi2Vec-BiGRU

that is designed for learning atoms and solving the
single-task and multi-task binary classification prob-
lems in the field of drug discovery. Such problems are
the basic and also key problems in this field, since
many other tasks (e.g.,Drug-target interactions, Protein-
protein interactions) significantly rely on the quality of
the classification result.

• Our method leverages a powerful model, Bidirectional
Gated Recurrent Unit (BiGRU) neural network, which
is initially developed for solving problems in NLP and
image processing, to train the sample vectors embed-
ded in the atomic matrix.

• The experimental results show that, for the problem of
single- and multi-task binary classification in the field
of drug discovery, our proposed approach can achieve
competitive performance, compared against classic and
state-of-the-art graph-structured methods.
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