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Abstract—Effectively identifying compound-protein interactions (CPIs) is crucial for new drug design, which is an important step in
silico drug discovery. Current machine learning methods for CPI prediction mainly use one-demensional (1D) compound/protein strings
and/or the specific descriptors. However, they often ignore the fact that molecules are essentially modeled by the molecular graph. We
observe that in real-world scenarios, the topological structure information of the molecular graph usually provides an overview of how
the atoms are connected, and the local chemical context reveals the functionality of the protein sequence in CPI. These two types of
information are complementary to each other and they are both significant for modeling compound-protein pairs. Motivated by this, we
propose an end-to-end deep learning framework named GraphCPI, which captures the structural information of compounds and
leverages the chemical context of protein sequences for solving the CPI prediction task. Our framework can integrate any popular
graph neural networks for learning compounds, and it combines with a convolutional neural network for embedding sequences. To
compare our method with classic and state-of-the-art deep learning methods, we conduct extensive experiments based on several
widely-used CPI datasets. The experimental results show the feasibility and competitiveness of our proposed method.

Index Terms—Graph neural networks, machine learning, compound-protein interaction.
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1 INTRODUCTION

E FFECTIVELY identifying compound-protein interactions
(CPIs) is a key task in pharmacology and drug discov-

ery [2]. In the CPIs task, compound refers to molecular
compounds (instead of ionic compounds), which can be
represented by a molecule graph with atoms as nodes
and chemical bonds as edges; while proteins are sequences
of amino acids. CPI prediction is to find the potential
compound-protein pairs where a protein is targeted by at
least a compound. However, the predicted CPI does not
mean that a positive or negative influence on functions
triggered by proteins. This may affect the disease conditions
[3], [4]. Figure 1 shows a CPI example with compound-
protein pair (Aspirin-Phospholipase). In the figure, the dotted
line indicates the Hydrophobic interaction.

By understanding the CPI task, it can help users find out
candidate compounds that are able to inhibit the protein,
and it benefits many other bioinformatic applications such
as drug resistance [5], and cancer research [6]. As a result,
CPI prediction has received much attention in recent years
[7], [8], [9]. Traditional machine learning approaches for
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Fig. 1. Example for visualization of CPI: Aspirin-Phospholipase (PDB
ID:6MQF)

CPI prediction can be roughly classified into feature-based
and similarity-based methods. Generally speaking, feature-
based methods construct input vector from descriptors of
compounds and proteins, such as molecular docking [10]
and the 3D structure-embedded of protein [11], which are
often difficult to obtain. On the other hand, similarity-based
methods rely on hypothesis that compounds with similar
structures should have similar properties [12]. The repre-
sentative works of this line of methods are like [13], [14],
etc. Recently, owing to the remarkable success in various
machine learning tasks (e.g., image recognition [15], natural
language processing [16], [17]), deep learning methods are
also exploited for CPI prediction [18], [19], [20]. In this
branch, existing methods consider either label/one-hot en-
codings or the fingerprint of molecules. However, they have
not considered the chemical bond of atoms and the local
chemical context of amino acids. We observe that, in real-
world scenarios, the topological structure information usu-
ally provides an overview of how the atoms are connected,
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and the local chemical context reveals the functionality of
the protein sequence in CPI, which is just like the semantic
meaning of a word in a sentence. These two types of
information are complementary to each other and they are
both important for modeling compounds and proteins.

Inspired by the aforementioned facts, in this paper we
attempt to develop an end-to-end deep learning framework
that combines the local chemical context for sequences and
the topological structure for molecules to learn the inter-
action between compounds and proteins. To this end, we
propose a graph neural representation framework for CPI
prediction, and we refer to it as GraphCPI. Our framework
consists of two major building blocks: One of the major
building blocks learns low-dimension vector representa-
tions for protein sequences using a convolutional neural
network (CNN), while the other building block learns graph
representations for compounds using graph neural network
(GNN), respectively. Specifically, the CNN building block
extracts the local chemical context information for amino
acids in proteins; in the process of extracting, we pro-
pose to incorporate Prot2Vec [21], which was previously
used for representation and feature extraction for biologi-
cal sequences, to encode the amino acids to a distributed
representation. In this way, we can efficiently avoid the
limitation of the label/one-hot encodings of amino acids,
since it often ignores the context information. Meanwhile,
the GNN building block extracts the topological features
for compounds by constructing a molecular graph. The
GNN building block is pretty flexible, which can be re-
placed by any popular graph-based neural networks. The
learned representations for both compounds and proteins
are then passed to a dense neural network for predicting
the interaction. Different from the existing feature-based
and similarity-based methods, our framework needs neither
molecular docking nor 3D structure-embedding of the pro-
teins. Additionally, the proposed framework takes advan-
tage of the topological information of atoms encoded in the
graph neural representation, which differs our framework
from the existing deep learning methods such as DeepCPI
[22]. In a nutshell, the novelty and main contributions of
this paper are as follows:

• We propose a framework that incorporates the ad-
vanced graph neural representation for compound
and pre-trained embedding techniques for protein
sequences together. To the best of our knowledge,
in the CPI field this paper is the first to combine
the local chemical context and topological structure
to learn the interaction between compound-protein
pairs.

• We conduct extensive experiments based on several
widely-used CPI datasets with various imbalance
ratios. The experimental results demonstrate the fea-
sibility and competitiveness of our proposed frame-
work, compared against the classic and state-of-the-
art methods.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the proposed
framework for CPI prediction task; Section 4 covers and
analyzes the experimental results. Finally, we conclude the
paper in Section 5.

2 RELATED WORK

Compound-protein interactions (CPIs) prediction has been
an interesting topic in drug discovery. Existing methods for
CPI prediction can be roughly classified into two categories:
(i) traditional methods, and (ii) deep learning-based meth-
ods. Next, we review these works, respectively.

2.1 Traditional Methods
Traditional methods focused either on simulation-based

methods (e.g., descriptors), or on machine learning based
models, which heavily rely on domain similarity [23]. For
example, Jaroch et al. [24] integrated the chemical attributes
of compounds, the genomic attributes of proteins and the
known CPIs into a unified mathematical framework. With
a variety of similarity information, Bleakley et al. [25] pre-
sented the bipartite local model (BLM) to predict CPIs, and
they trained local support vector machine (SVM) classifiers
with the help of known interactions. Later, Mei et al. [19] im-
proved BLM by exploiting the already known interactions of
neighbors, which compensates the lack of BLM. To predict
the drug-target interaction (DTI) involving new drugs or
targets for unknown interactions, Ezzat et al. [26] proposed
the matrix factorization method that combines with graph
regularization. Additionally, Cheng et al. [27] presented a
method named PUCPI that employs biased-SVM to predict
CPIs using positive and unlabeled examples.

Although classic methods show reasonable performance
in CPI prediction, they are often computational expensive,
require additional expert knowledge, or the 3D structure-
embedded of protein, which are often difficult to obtain.
Different from these classic methods, the proposed frame-
work is able to automatically extract features from the data,
and requires neither domain knowledge nor 3D structure of
the target/protein. These main features make our proposed
framework applicable to large scale CPI datasets.

2.2 Deep Learning-based Methods
In recent years, much attention has been devoted to ap-

plying deep learning techniques for DTI prediction (which
is an alternative name of CPI prediction). For example, Gao
et al. [28] proposed an end-to-end neural network model
to predict DTIs directly from low level representations, and
they provided biological interpretation by using two-way
attention mechanism. Moreover, Wan et al. [29] developed
a nonlinear end-to-end learning model named NeoDTI that
integrates diverse information from heterogeneous network
data, and it automatically learned topology-preserving rep-
resentations of drug-target pair to facilitate DTI prediction.
Moreover, Karimi et al. [20] presented a DTI model named
DeepAffinity that represents protein and SMILES sequences
based on a recurrent neural network (RNN) , and note that
SMILES (Simplified Molecular-Input Line Entry System)
is a single-line text representation to encode the chemical
context of molecule [30]. Recently, a model called DeepCPI
was proposed for CPI prediction [22].

Among the studies in this line branch, DeepCPI [22]
could be the one most relevant to our work, since it ad-
dresses the problem same to ours, and uses also GNN and
CNN. Specifically, DeepCPI uses a traditional GNN, based
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Fig. 2. An overview of GraphCPI. Note that, Phospholipase (a) and (b) refer to two residues of Phospholipase. In fact, Phospholipase has many
residues, we only plot two residues, due to space limit. The top part illustrates a 3-layer CNN that learns representation for proteins, while the bottom
part illustrates a 3-layer GNN that learns representation for compound. In the figure, Di, Ei, Mi and Wi (i ∈ {1, 2}) denote the input feature, output
feature, the number of filter and weight matrix, respectively. N denotes the batch size.

∑
means sum up the D convolution results and adds a

constant bias to compute the output feature map.

on representation of r-radius fingerprints, to encode the
molecular structure of compounds; and it uses a CNN to
encode protein sequences without pre-trained embedding.
Compared with DeepCPI, for compound representation
our proposed deep learning framework incorporates the
topological information obtained from GNNs to encode the
atoms, and it uses pre-trained embedding (e.g., Prot2Vec) to
encode the amino acids to boost the representation learning
of proteins. Moreover, our framework could be much more
flexible, since it allows us to integrate any popular GNN
model.

3 THE GRAPHCPI FRAMEWORK

In this section, we firstly describe an overview of the pro-
posed framework called GraphCPI (Section 3.1), and then we
present the representation learning for compounds and for
proteins, respectively (Sections 3.2∼ 3.3). Finally, we present
the detail of CPI task prediction (Section 3.4).

3.1 Overview of GraphCPI
Figure 2 gives an overview of our proposed framework,
named GraphCPI, for the compound-protein pair task. Gen-
erally, GraphCPI takes the molecular structure of the compound
and the symbolic sequences of the protein as the inputs. Then,
the molecular structure of the compound in SMILES [30]
string is encoded into a molecular graph, while the sequence
of the protein is encoded into a distributed representation
(like Word2Vec [16]), forming a matrix. Later, the molecular
graph is fed into graph neural networks (GNNs) for captur-
ing the structural information of the compound, while the
matrix is fed into convolutional neural networks (CNNs) to
obtain local chemical context of the protein. As a result, we
obtain two latent representations for compound and protein,
respectively. After that, we further feed the concatenation of

two latent representations into a stack of fully connected
layers, and finally GraphCPI outputs a binary value for the
compound-protein pair (1 means interaction, and 0 means
otherwise).

3.2 Graph Representation for Compounds
As we know, compounds are often represented in the for-
mat of SMILES provided by many database (e.g, ZINC,
PubChem). The molecular structure is a significant part
in graph neural representation learning for compounds.
To represent such a structure efficiently, most of existing
methods either use similarity-based manner/strategy to
infer the unknown CPI, or use molecular fingerprints and
protein family databases to represent compound-protein
pairs. These methods usually have fixed features, while
they cannot learn more features for compound and protein
representation. To alleviate such dilemmas, in this paper
we propose to use the end-to-end representation learning
that combines with the advanced embedding techniques
for compounds and proteins. Specifically, for each input
SMILES string of a chemical compound, we use RDKit
[31] tool to transform it into a molecular graph, which is
represented as G = (V, E), where V denotes the atomic
feature and E denotes the chemical bond value between
adjacent atoms. For ease of understanding, we take Aspirin
(O=C(C)Oc1ccccc1C(=O)O) as an example, as shown in Fig-
ure 3. Firstly, it is transformed into its 2D structures by using
RDKit tool. Then predefined atomic features are assigned to
each node based on its atomic number. In this paper, we
adopt multi-dimensional binary feature vector to encode 5
types of atomic features, including atomic symbol, adjacent
atoms, adjacent hydrogens, implicit value and aromaticity.
Specifically, we use a binary vector of size 44, denoted by
A1 (i.e., green), to encode the atomic symbol. For example,
the 12th atom ’O’ is encoded by one-hot encoding as (01
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Fig. 3. An example of the molecular graph representation of Aspirin by using RDKit.

... 00) while (10 ... 00) for the 2nd atom ’C’, and ’unknow’
represents the unknown atom symbol in the rare case. Then
we adopt A2 (i.e., blue) of size 11 to represent the adjacent
atoms of each atom in the molecule, and A2 is defined to be
its number of directly-bonded neighbors (i.e., degree). For
example, the 1st atom has 3 directly-bonded neighbors, so
we have itsA2 as (00010...0). Next, the adjacent hydrogens is
denoted by A3 (i.e., orange) with a size of 11 to describe the
total number of Hs (explicit and implicit) on the atom. Here
”explicit” refers to atoms in the graph while ”implicit” refers
to atoms that are not in the graph (i.e., Hydrogens). For
example, the adjacent hydrogens of atoms on the benzene
ring is 1, so we encode its A3 by (10...0), while the adjacent
hydrogens of 3rd atoms is 3, then its A3 is encoded by
(00010...0). Meanwhile, we represent the implicit value of
each atom as A4 of size 11 to record the number of implicit
Hs on the atom. For example, the implicit value of 12th atom
is 1, so we encode its A4 by (010...0). And we use a bool
vector A5 to encode the aromaticity that means whether the
current atom is in an aromatic structure. For example, the
4th atom is in an aromatic structure so we encode itsA5 by 1
whileA5 of the 1st atom is encoded by 0. All processings can
be implemented by the corresponding functions of RDKit
tool1. Finally, we obtain the molecular graph representation
of Aspirin that consists of atom number (i.e., total number of
atoms), atomic features and edge features (i.e., edge list), so
we can extract the structural information from a molecular
graph. The list of the initial atom features is summarized in
Table 1.

Once such a molecular graph is obtained, one can fed
it into any popular graph neural network model (e.g., GCN
[32], GAT [33], GIN [34]) to obtain the structural information
of the compound. As we will show later, although different
graph neural network models may exhibit their own advan-
tages for different evaluation metrics, but their performance

1. https://www.rdkit.org/docs/source/rdkit.Chem.rdchem.html

gaps are small.

3.3 Sequence Representation for Proteins

Proteins are generally represented as a string of ASCII
characters that represent 25 types of amino acids. In this
paper, we propose to first encode the amino acids into
d-dimensional vector using Prot2Vec [21]. Different from
the previous methods used one-hot or label encoding to
represent the protein sequence, each amino acid type is
simply represented by label encoding (i.e., integer) accord-
ing to its corresponding alphabetical symbol. For example,
we denote Alanine (A) by 1, Glutamine (G) by 7, Threonine
(T) by 19 and so on, respectively. And Alanine (A) can
be also encoded by one-hot encoding as (10...00), each bit
represents one type of 25 amino acid sequences. However,
a single amino acid often makes no sense, we adopt a
fixed length N-gram splitting method to split the sequence
into meaningful biological words. Compared with the com-
monly used label encoding methods, the fixed-length N-
gram divides the sequence into a sequence of N-grams.
Thus, each N-gram can be regarded as ”biological word”.
Intuitively, it can generate more ”word context” than the
commonly used label encoding. To balance the trade-off
between the computation complex (i.e., 20N ) and biological
significance, here we set N as 3. Specifically, the protein
sequence is divided into the first three amino acids as the
initial position in order to obtain 3 group of subsequences,
and then remove the duplicated subsequences among them
to obtain the final subsequences. We take HTR1D (Human)
Recombinant Protein as an example. As shown in Figure 4,
the protein sequence totally consists of 377 amino acids. The
first group of subsequences are generated with ’M’ in red as
the starting amino acid, while ’S’ in blue as the starting point
of the second group of subsequences. And the duplicated
subsequences among three groups are removed (e.g., ’LIT’).

TABLE 1
The list of initial atom features

Atom Feature Size Description

Atomic symbol 44 [C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As, Al, I, B, V, K, Tl, Yb, Sb, Sn, Ag, Pd, Co, Se, Ti, Zn,
H, Li, Ge, Cu, Au, Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb, Unknow] (One-hot)

Adjacent atoms 11 number of atoms in the molecules of an element [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (One-hot)
Adjacent hydrogens 11 total number of hydrogen [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (One-hot)

Implicit value 11 the implied value of atoms [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (One-hot)
Aromaticity 1 whether atoms are aromatic [0/1]
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Finally, we concatenate the remaining three groups to obtain
the finally 3-gram subsequences.

 3-gram Split
MSPLNQSAEGLPQEASNRSLNATETSEAWDPRT

LQALKISLAVVLSVITLATVLSNAFVLTTILLTRK

LHTPANYLIGSLATTDLLVSILVMPISIAYTITHT

WNFGQILCDIWLSSDITCCTASILHLCVIALDRY

WAITDALEYSKRRTAGHAATMIAIVWAISICISIP

PLFWRQAKAQEEMSDCLVNTSQISYTIYSTCGAF

YIPSVLLIILYGRIYRAARNRILNPPSLYGKRFTTA

HLITGSAGSSLCSLNSSLHEGHSHSAGSPLFFNHV

KIKLADSALERKRISAARERKATKILGIILGAFIIC

WLPFFVVSLVLPICRDSCWIHPALFDFFTWLGYL

NSLINPIIYTVFNEEFRQAFQKIVPFRKAS

377 amino acids

    MSP, LNQ, SAE, , LIT, FRK;

  SPL, NQS, AEG, , LIT, RKA;

 PLN, QSA, EGL, , PFR, KAS 

 Concatenate & Duplicate Removal 

(1) MSP, LNQ, SAE, , IVP, FRK

(2) SPL, NQS, AEG, , VPF, RKA

(3) PLN, QSA, EGL, , PFR, KAS 

 Fixed-length N-gram Split

Fig. 4. Example of 3-gram split protein sequence.

After we obtain the meaningful “biological words”, then
for each such a word we map it to an embedding vector
by looking up a pre-trained embedding dictionary that has
9048 words and a 100-dimension vector per word, which is
obtained from Swiss-Prot2. One can set the fixed length to
a specific value (e.g., 1000), and then the sequence will be
truncated when its length is over the default value (e.g.,
1000); otherwise, it will be padded with 0. As a result,
we transform each sequence of amino acids to a matrix,
where each row is the embedding of a biological word.
Algorithm 1 shows the detailed steps of the embedding
process. In general, a protein sequence with fixed length
l is split into a set of subsequence or ”biological word”
(Line 1). Then it maps subsequence by looking up each of
the sequence embedding from the pretrained dictionary D,
while it randomly generates values if it is not in D (Line
2-6). Finally, it constructs a protein matrix A by aggregating
embedding vectors (Line 7), where each line represents the
pretrained vector of subsequence. The matrix shall be fed
into a CNN to obtain the local chemical context of the
protein.

Algorithm 1: Prot2Vec Embedding
Input: a protein sequence P , dictionary D, amino acid

x, subsequence set s, fixed length l, vector
dimension d.

Output: protein matrix A
1 s = (x1x2x3, ..., xjxj+1xj+2)(1 ≤ j < l)←− split(P );
2 for j=1 to l do
3 if xj /∈ dictionary then
4 embedding aj ∈ <d ←− randomgenerate(xj);

5 aj
map←−−− xj // by using D ;

6 protein matrix A←−
∑m

j=1 aj ;
7 return A ∈ <l×d;

3.4 Compound-Protein Interaction Prediction

It is easy to understand that, one can view the compound-
protein pair prediction as a binary classification problem
by predicting the interaction value. With the representation
learned from the previous subsections, in what follows, we
are ready to integrate all features from compounds and
proteins to predict the interaction.

2. https://www.uniprot.org/
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Fig. 5. Workflow for CPI prediction and main building blocks.

Generally, we concatenate two kinds of representations,
and feed them to two fully-connected layers to output the
interaction value. Figure 5 shows the workflow for CPI
prediction and the main building blocks. More precisely, for
the compound SMILES, we first convert it to a molecular
graph by RDKit tool. And we use GCN model [32] for
learning on graph representation of compound, we use 78-
dimensional atomic features as the node feature of molecu-
lar graph. In our GCN model, we adopt three consecutive
GCN layers, each followed by a ReLU activation function.
Then a global max pooling layer is applied to obtain the
final graph representation vector. For the protein sequence,
we use a string of amino acid sequences and adopt 1D CNN
layers to learn a sequence representation vector. Specifically,
the protein sequence is first split by fixed length 3-gram
splitting method, then an embedding layer is applied to the
generated subsequences where each 3-gram subsequences is
represented by a 100-dimensional pre-trained word vector.
Next, three 1D convolutional layers are adopted to learn dif-
ferent levels of features. Finally, a max pooling layer is used
to get a final representation vector of the protein sequence.
Here the Rectified Linear Unit (ReLU) [35] is selected as the
activation function. Then, given a set of compound-protein
pairs and the ground-truth interaction values in the training
set, its objective is essentially to minimize the loss function
L [22] as follows:

L(Θ) = −
K∑
i=1

logPti +
λ

2
‖Θ‖22, (1)

where Θ denotes the set of all weight matrices, bias vec-
tors in our framework (e.g., GCN and CNN), and the
embeddings of N-gram words; K is the total number of
compound-protein pairs, ti is the i-th label, and λ represents
an L2 regularization hyper-parameter. Here, we adopt back-
propagation to train Θ.
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TABLE 2
The detailed description of datasets.

negative ratio compounds proteins positive negative

1 1052 852 3369 3369
human 3 1052 852 3369 10107

5 1052 852 3369 16845

1 1434 2504 4000 4000
C.elegans 3 1434 2504 4000 12000

5 1434 2504 4000 20000

4 EXPERIMENT

In this section, we first describe the experimental settings
including datasets, evaluation metrics and baseline ap-
proaches (Section 4.1). Then, we examine the stability of our
framework by using various graph neural networks (Sec-
tion 4.2). Afterwards, we compare our proposed framework
GraphCPI with classic and state-of-the-art methods (Section
4.3 and 4.4). Finally, we demonstrate the impact of different
parts integrated in our proposed framework (Section 4.5).

4.1 Experimental Setup
Dataset. Following prior work [36], in our experiments
we used several publicly available datasets called human,
C.elegans and DUD-E for compound-protein interaction pre-
diction.

• The human dataset contains 3369 positive interac-
tions between 1052 unique compounds and 852 u-
nique proteins.

• The C.elegans dataset contains 4000 positive inter-
actions between 1434 unique compounds and 2504
unique proteins.

• The DUD-E dataset consists of 102 targets, 22,886
active compounds and their affinities against 102
targets. On average, each target has approximately
224 ligands.

Evaluation Metrics. We adopted three kinds of metrics,
widely used in CPI task, to evaluate the performance. They
are precision, recall and AUC [36]. The precision indicates how
many of the samples predicted to be positive are correct. It
is computed as:

precision =
TP

TP + FP
, (2)

where TP (true positive) means the model correctly predict
a positive class, FP (false positive) means the model incor-
rectly predict a negative class.

The recall indicates how many positive samples are cor-
rectly predicted by the model. It is can be computed as:

recall =
TP

TP + FN
, (3)

where FN (false negative) means the model incorrectly
predict a positive class.

The AUC refers to the probability that a randomly cho-
sen positive sample is ranked higher than a negative one
[36]. It is computed as:

AUC =

∑
I(Ppos, Pneg)

P ∗N
, (4)

where P and N denote the number of positive and negative
samples, respectively; Ppos and Pneg are the probability of
obtaining positive and negative samples by the prediction
model, respectively; and I(Ppos, Pneg) is computed as:

I(Ppos, Pneg) =


1, Ppos > Pneg

0.5, Ppos = Pneg

0, Ppos < Pneg

. (5)

Baseline Methods. We compared our proposed framework3

against both classic and state-of-the-art methods. As for
classic models, in our experiments we compared four tra-
ditional machine learning models4, including k-NN, random
forest (RF), L2-logistic (L2), and SVM. The results of these
models are obtained in [22]. They take multiple similarity
measures from different features for both drugs and proteins
as the input of classifier. Specifically, the drug similarity
is computed from features of chemical structure and side
effect, respectively, and the protein similarity is derived
from sequence similarity, functional annotation semantic
similarity and protein domain similarity, respectively. As for
the state-of-the-art model, we directly compared a recently
published model called DeepCPI5 [22]. In brief, this method
uses the representation of r-radius fingerprint to encode
the structural information in a chemical compound, and
learns node and edge features using a graph neural network
(GNN). Meanwhile, it uses the no pre-trained embedding
of amino acids to encode protein sequences, and learns
the chemical context using a convolutional neural network
(CNN). The results of DeepCPI are reported from the orig-
inal paper. The performance is achieved with the following
experimental setting: r-radius is 2, n-gram is 3, window size
is 11, vector dimensionality is 10, number of time steps in
GNN is 3, and the number of layers in CNN is 3. In contrast,
DeepCPI leverages a GNN to map a graph G = (V,E) to a
vector y ∈ Rd, by using two transition functions: (1) vertex
transition (Eq. 6), and (2) edge transition (Eq. 7).

v
(t+1)
i = σ(v

(t)
i +

∑
j

h
(t)
ij ), (6)

e
(t)
ij = σ(etij + gtij), (7)

where σ is the element-wise sigmoid function (e.g., 1/(1 +

e−x)), f is a non-linear activation function, v(t)i and etij
denote the node and edge embeddings between the i-
th and j-th nodes at iteration t respectively, h(t)ij denotes
the hidden vector, which is obtained by combining node
vj(j ∈ neighbor(vi)) with edge eij , and bh ∈ Rd is the bias
vector, as shown in Eq. 8. The parameter gtij is updated by
node vti and vtj , and bg ∈ Rd is the bias vector, as shown in
Eq. 9.

h
(t)
ij = f(W

[
v
(t)
j

e
(t)
ij

]
+ bh), (8)

gtij = f(W (v
(t)
i + v

(t)
j ) + bg). (9)

3. https://github.com/jacklin18/GraphCPI
4. These models were obtained from http://admis.fudan.edu.cn/

negative-cpi/.
5. https://github.com/masashitsubaki
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For ease of comparison, we report the main results of four
classic and DeepCPI models from Table 1 (resp. Table 2)
for human (resp. C.elegans) dataset in [22]. As for human
and C.elegans dataset, an 8/1/1 training/validation/testing
random split is adopted by DeepCPI. As for DUD-E dataset,
we followed the same training and evaluating strategies
as DeepCPI [22]. Specifically, we retrain DeepCPI model
with the same parameter settings as in the original paper,
where detailed pre-processing on DUD-E dataset refers to
the following part (i.e., Other Experimental Details).

Implementation of Our Framework. As mentioned in Sec-
tion 3.2, once the molecular graph is obtained, one can
feed it into any popular graph neural network model to
obtain the topological information of compounds. In order
to examine the robustness of our proposed framework, we
employed respectively three kinds of popular graph neural
networks, and used each of them as the building block of
the proposed framework. Specifically, these three types of
graph neural networks are described as follows.

(1) GCN6 [32]: This approach introduces a graph Lapla-
cian regularization and proposes a 2-layer Graph Convolu-
tional Network (GCN) with the following layer-wise propa-
gation rule:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (10)

where Ã = A+ IN is the adjacency matrix of the undirected
graph G, IN is the identity matrix, Dii =

∑
j Ãij , W (l)

is a layer-specific trainable weight matrix; σ(.) denotes an
activation function (e.g., ReLU [37]), and H(l) ∈ RN×D is
the matrix of activations in the l-th layer.

(2) GAT7 [33]: This method uses a graph convolution
model based on self-attention mechanism. It adds a graph
attention layer (GAT) in its component. A set of node features
x ∈ RF is regarded as input of GAT layer, and then it
applies a linear transformation to each node based on a
weight matrix W ∈ RF×F

′

, where F and F
′

denote the
dimension of input and output nodes, respectively. Addi-
tionally, attention coefficients between nodes and its 1-hop
neighbors are used to compute the output node. That is,

eij = α(W~hi,W~hj), (11)

where eij denotes the importance degree of node j to node
i. To make coefficients easily comparable across different
nodes, it normalizes them across all choices of j using the
softmax function as follows:

αij = softmaxj(eij), (12)

at last, a non-linearity σ is applied to compute the output
node ~h

′

i as follows:

~h
′

i = σ(
∑
j∈Ni

aijW~hj). (13)

(3) GIN8 [34]: This method uses a graph isomorphism
network to achieve the maximum discriminative power

6. https://github.com/tkipf/gcn
7. https://github.com/PetarV-/GAT
8. https://github.com/weihua916/powerful-gnns

among GNNs. In particular, multi-layer perceptrons (MLPs)
are used in GIN for modelling and parameter updating. It
updates the node representation as follows:

h(k)v = MLP (k)((1 + ε(k)) · h(k−1)v +
∑

u∈N(v)

h(k−1)u ), (14)

where ε is either a learnable parameter or a fixed scalar,
h ∈ RF is the node feature vector, and N(i) is the neighbors
of node i.

For ease of presentation, we refer to our proposed frame-
work integrating GCN [32] as GraphCPI GCN. Similarly, we
refer to other three methods integrating GAT [33], GIN [34]
as GraphCPI GAT, and GraphCPI GIN, respectively. In what
follows, when we mention a method GraphCPI without any
suffix (e.g., GAT, or GCN), it refers to GraphCPI GCN,
unless stated otherwise.
Other Experimental Details. For GNN block, we used an
initial atom vector with size 78 as the input of GNN model.
For Prot2Vec, we used 100-dimension pre-trained embed-
ding representation for N-gram words. We constructed ma-
trices with (1000×100) dimensions for protein, where 1000
refers to the fixed length of the protein sequence. The pro-
posed framework was implemented using PyTorch9 with
Tensorflow [38] backend. Our experiments were run on Lin-
ux 16.04.10 with Intel(R) Xeon(R) CPU E5-2678 v3@2.50GHz
and GeForce GTX 1080Ti (11GB). Table 3 shows the main
training parameters, while other omitted parameters were
set to default values.

TABLE 3
The main parameter setting

Parameter Setting Parameter Setting

Optimizer Adam Learning rate 0.0005
Epoch 1000 Batch size 512
Kernel size 8 Vector dimension 100
Sequence length 1000

As for imbalanced datasets (e.g., human and C.elegans)
in our experiments, we used a python library called Pub-
ChemPy10 to obtain the SMILES format of compounds, and
we extracted the protein sequence from Uniprot11. Since the
ratio of positive and negative samples may affect the per-
formance, we used three different ratios (1:1, 1:3 and 1:5) to
validate the performance of the proposed method. A more
detailed description is summarized in Table 2. Regarding
the extraction of positive and negative samples, the reader
can refer to [36] for details.

As for DUD-E dataset, the original data were obtained
from the DUD-E site12. It originally consists of 102 targets
and 22,886 active compounds (an average of 224 actives per
target). We preprocessed the dataset to apply our model.
Specifically, we discarded some compounds that can not be
implemented by RDKit, and we used .ism file to obtain the
SMILES string of ligands and extracted the protein sequence

9. https://github.com/pytorch/pytorch
10. https://github.com/mcs07/PubChemPy
11. https://www.uniprot.org/uploadlists/
12. http://dude.docking.org/
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Fig. 6. Testing the stability of our framework using various GNN models, based on human and C.elegans datasets with various imbalance ratios.
Note that, for short, in this figure the dataset human is shorten as h, and C.elegans is shorten as C; in addition, the method GraphCPI GAT,
GraphCPI GIN and GraphCPI GCN are shorten as GAT, GIN and GCN, respectively.

by the corresponding PDB ID of the target. After prepro-
cessing, we constructed a .csv file including 102 targets and
22,806 active compounds/clustered ligands. In the experi-
ment, we evaluated our proposed model using randomly 72
targets as the train set and the rest 30 targets as the test set,
we used the balanced dataset for model training. Note that
the number of training samples is 22,806 active (i.e. positive
sample) and 22,806 decoy (i.e., negative sample), and we
randomly chose the active compounds that interact with 30
targets as the test set. Besides, we follow the previous work
[39] to train and evaluate our proposed GraphCPI model
using 3-fold cross-validation. The folds were split between
targets, where all ligands of the same target belong to the
same fold. To avoid the impact of homologous proteins,
targets belonging to the same protein families were strictly
kept in the same fold. Other settings are kept the same as
in [22]. The detailed results of chosen 30 target in DUD-E
dataset are as shown in Supplementary.

Effectively tuning hyper-parameters is a challenging pro-
cess during deep neural network modeling, especially for
complicated model architectures. It is vital to find out the
appropriate sets of hyper-parameters, with respect to its
efficiency and effectiveness. Specifically, for each dataset,
we performed a grid search, in which we optimized the
following hyper-parameters simultaneously: n (the number
of ”biological word” for protein sequence splitting), k (the
number of convolutional layers for sequence embedding), l
(the number of graph attention layers for molecular embed-
ding), learning rate, and dropout rate.

4.2 Stability of Our Framework

To examine the performance when various graph neural
networks are employed, we conducted extensive experi-
ments based on human and C.elegans datasets with various
imbalance ratios (recall Table 2). Figure 6 shows the com-
parison results of three methods including GraphCPI GAT,
GraphCPI GCN, and GraphCPI GIN. Note that, as for these
methods, the other parts remain the same, except that they
use various neural networks (GCN, GIN, or GAT).

From this figure, one can see that these methods
achieved good performance in all these three metrics (pre-
cision, AUC, recall) under these benchmark datasets with
various imbalance ratios. These results indicate that (i)
our proposed framework is feasible, and (ii) our proposed
framework may have competitiveness (notice: more experi-
mental results reported later also validate this potential). On
the other hand, one can see that the performance gap among

these three methods is very small, which can be understood
from 18 cases (3 metrics × 3 imbalance ratios × 2 datasets),
as shown in Figures 6(b)-6(c). In this regard, it indicates that
the stability or robustness of our framework.

4.3 Comparison with Classic and State-of-the-Art
Methods
Table 4 compares our proposed framework with classical
and state-of-the-art methods. In general, GraphCPI outper-
forms the classic and state-of-the-art deep learning methods
on 10 out of 18 situations (cf., the last column in the table).
Although SVM achieves some good performance in term
of precision and recall on the human dataset (which is a
relatively small dataset, recall Table 2), it does not perform
well on the larger dataset C.elegans, and this characteristic
is even more obvious when the number of negative samples
increases. This is because these classic models (e.g., SVM)
heavily rely on fixed hand-crafted features and the similari-
ty matrices of compounds and proteins (e.g., PubChem fin-
gerprints and Pfam domains), which results in poor stability
and relatively poor performance.

On the other hand, when we compared with DeepCPI,
we found that our method has comparable performance to
DeepCPI on human dataset, and particularly it almost fully
dominant in all metrics on the C.elegans dataset. This indi-
cates that our proposed method is much more robust when
the dataset is large, or even when the dataset is imbalanced.
Meanwhile, this also demonstrates the superiority of our
proposed method.

4.4 Other Comparison Results
To further demonstrate the good performance of our pro-
posed method, we also compared it with AutoDock V-
ina and Smina as the non-machine learning methods, and
AtomNet, 3D-CNN and DeepCPI as the deep learning
models. AutoDock Vina [40] is an open-source program
for molecular docking and virtual screening, and Smina
[41] is a version of AutoDock Vina specially optimized for
high-throughput scoring. AtomNet [42] is the first structure-
based deep convolutional neural network method designed
to predicting the bioactivity of small molecules, and it
combines information about the ligand and the structure
of the target, and requires that the locations of each atom
in the binding site of the target, while 3D-CNN [39] is also
a 3D-structured CNN method, which uses a 3D grid repre-
sentation generated by docking, and predicts the protein-
ligand interaction, and the DeepCPI can be recalled in
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TABLE 4
Comparison results of proposed models and baselines on human and

C.elegans dataset.

Measure Negative ratio k-NN RF L2 SVM DeepCPI GraphCPI

1 0.860 0.940 0.911 0.910 0.970 0.973
AUC 3 0.904 0.954 0.920 0.942 0.950 0.983

5 0.913 0.967 0.920 0.951 0.970 0.983
1 0.927 0.897 0.913 0.950 0.918 0.890

recall 3 0.882 0.824 0.773 0.883 0.913 0.892
5 0.844 0.825 0.666 0.861 0.975 0.856
1 0.798 0.861 0.891 0.966 0.923 0.940

precision 3 0.716 0.847 0.837 0.969 0.949 0.898
5 0.684 0.830 0.804 0.969 0.969 0.886

1 0.858 0.902 0.892 0.894 0.978 0.989
AUC 3 0.892 0.926 0.896 0.901 0.971 0.989

5 0.897 0.928 0.906 0.907 0.971 0.994
1 0.827 0.844 0.877 0.818 0.929 0.955

recall 3 0.743 0.705 0.681 0.576 0.921 0.926
5 0.690 0.639 0.582 0.519 0.836 0.937
1 0.801 0.821 0.890 0.785 0.938 0.937

precision 3 0.787 0.836 0.875 0.837 0.916 0.914
5 0.774 0.830 0.863 0.896 0.920 0.930

* Note: The top (resp. bottom) part refers to the comparison results on
human (resp. C.elegans) dataset. The main results of four classic and
DeepCPI models are obtained from Table 1 (resp. Table 2) for human
(resp. C.elegans) dataset in [22]. The above performance of DeepCPI
is achieved using 5-fold cross-validation with the following experimental
setting: r-radius is 2, n-gram is 3, window size is 11, vector dimensionality
is 10, number of time steps in GNN is 3, and number of layers in CNN is 3.

Section 4.1. Figure 7 reports the comparison results on the
DUD-E dataset (notice that DeepCPI is also included in the
figure, for ease of later discussion and analysis). And the
AUC scores of these comparison baselines are reported from
Figure 7 of [22]. Meanwhile, we follow [22] to implement
our model on the same dataset to obtain the AUC values
by using 5-fold cross-validation. One can easily see that our
method performed the best among these competitors.

The reader might argue that, the comparisons in Figure 7
might not be very fair, since the input features are different.
For example, some methods (e.g., 3D-CNN) used 3D struc-
tured feature of proteins, while others (e.g., DeepCPI and
our method) used only 1D protein sequence. To alleviate
this concern, we conducted a fairer comparison. Specifically,
we made a deeper comparison between DeepCPI and our
method, since both methods used 1D protein sequence. Fig-
ure 8 reports the comparison results in three metrics. Note
that we trained the DeepCPI network to obtain a model by
using the same processed DUD-E dataset adopted in our
paper. By zooming in these figures, one can easily see that
our method outperforms the competitor (most similar to our
method) in all metrics. These results further demonstrate the
superiority of our method. The reason could be that (i) our
method incorporates GNN model to obtain the topological
information of compound graph, which can obtain more
high-order structures than a traditional GNN method based
on representation of r-radius fingerprints; (ii) our model
jointly considers the pre-trained embedding (e.g., Prot2Vec)
of amino acid sequences, which contributes positively to
the performance improvement. Moreover, our framework
performs much more flexible to integrate any popular GNN
model in terms of CPI prediction. Next, we shall further
verify this observation by ablation study.

AutoDock Vina Smina AtomNet 3D-CNN DeepCPI GraphCPI
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Fig. 7. Comparison of the proposed GraphCPI model to different types
of baselines on DUD-E dataset. Note: The AUC scores of AutoDock
Vina, Smina, AtomNet, 3D-CNN and DeepCPI model are obtained from
Figure 7 in [22].
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Fig. 8. The AUC, precision, recall scores of DeepCPI and GraphCPI on
DUD-E dataset.

4.5 Ablation Study

To better understand the effect of each part in the pro-
posed framework, we conducted an ablation study for our
proposed framework. Specifically, we adopted two variants
as follows. Firstly, to investigate the effect of Prot2Vec, we
removed the local chemical context information obtained
by Prot2Vec from the framework. This obtains a model
named GraphCPI1. Note that, for the protein representation,
we used the traditional one-hot/label encoding method
as the alternative. Secondly, we removed the structural
information captured by GNN, obtaining another variant
named GraphCPI2. Different from GraphCPI, GraphCPI2 uses
one-hot/label encoding for representation learning of com-
pounds. The detailed configurations of the variants of our
model are listed in Table 5. To speedup the test efficiency, we
set the number of epoch to 100, other experimental settings
are the same as that in Table 3.

Figure 9 shows the AUC, precision and recall scores of all
the variants on the human dataset with various imbalance
ratios. Firstly, when the imbalance ratio is 1:1 (positive
samples vs. negative samples), we can see from the figure
that, GraphCPI1 performs close to GraphCPI on the AUC
metric (cf., Figure 9(a)), but it always performs worse than
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Fig. 9. Ablation study (AUC, precision and recall) for our proposed model on human dataset with various imbalance ratios. (a) GraphCPI1 is the
variant that replaces the Prot2Vec embedding with one-hot/label encoding for the protein; (b) GraphCPI2 is the variant that replaces the GNN block
with one-hot/label encoding for the compound.

TABLE 5
The detailed descriptions of the variants

Model Compound Representation Protein Representation

GraphCPI RDKit + GNN Prot2Vec+CNN
GraphCPI1 RDKit + GNN One-hot/Label + CNN
GraphCPI2 One-hot/Label + CNN Prot2Vec+CNN

GraphCPI with regard to precision and recall from 20 to 100
epochs (cf., Figures 9(b) and 9(c)). These results imply that,
only using the structural information of the compounds
is not effective enough to learn a good representation for
compound-protein pairs. In other words, without the dis-
tributed embeddings learned by Prot2Vec, the performance
of our framework could drop a lot. This is because the
one-hot/label encoding lacks the feature engineering on the
amino acids. On the other hand, one can see also from
Figures 9(a), 9(b) and 9(c) that, GraphCPI2 performs poorer
than GraphCPI on all metrics; this implies the limitation of
one-hot/label encoding used for compound representation.
Meanwhile, it demonstrates that the structural information

obtained from GNN plays an important role in compound
representation learning. Secondly, when the imbalance ratio
is 1:3 (cf., Figures 9(d)-9(f)) and or even 1:5 (cf., Figures
9(g)-9(i)), we can see that GraphCPI1 performs less satis-
factorily than GraphCPI on at least one of the measures,
while GraphCPI2 performs less satisfactorily on at least two
of the measures. This further demonstrates the importance
of GNN in compound representation learning and of the
distributed embeddings learned by Prot2Vec. Meanwhile, it
also indicates that the proposed framework is robust even
if the dataset is imbalanced. In summary, all these results
show us that (i) the main components contained in our
framework are important and/or effective; and (ii) for the
CPI prediction task, our proposed framework GraphCPI is
robust for both balanced and imbalanced data.

5 CONCLUSION

In this paper, we have proposed a new framework
named GraphCPI for Compound Protein Interaction task.
GraphCPI uses graph neural representation for compounds
and the embedding representation for proteins. Our frame-
work can integrate any popular graph neural networks to
obtain the topological information of compounds, and it
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combines with a convolutional neural networks to extract
the chemical context of protein sequences. We have con-
ducted extensive experiments to compare our method and
existing methods, based on several benchmark datasets.
The experimental results consistently demonstrate that our
proposed is not only feasible but also very competitive,
compared against the state-of-the-art methods for CPI tasks.
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