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Abstract
Motivation  Predicting drug–target binding affinity (DTA) is essential for identifying potential therapeutic candidates in drug 
discovery. However, most existing models rely heavily on static protein structures, often overlooking the dynamic nature 
of proteins, which is crucial for capturing conformational flexibility that will be beneficial for protein binding interactions.
Methods  We introduce DynamicDTA, an innovative deep learning framework that incorporates static and dynamic protein 
features to enhance DTA prediction. The proposed DynamicDTA takes three types of inputs, including drug sequence, protein 
sequence, and dynamic descriptors. A molecular graph representation of the drug sequence is generated and subsequently 
processed through graph convolutional network, while the protein sequence is encoded using dilated convolutions. Dynamic 
descriptors, such as root mean square fluctuation, are processed through a multi-layer perceptron. These embedding features 
are fused with static protein features using cross-attention, and a tensor fusion network integrates all three modalities for 
DTA prediction.
Results  Extensive experiments on three datasets demonstrate that DynamicDTA achieves by at least 3.4% improvement in 
e
RMSE

 score with comparison to seven state-of-the-art baseline methods. Additionally, predicting novel drugs for Human 
Immunodeficiency Virus Type 1 and visualizing the docking complexes further demonstrates the reliability and biological 
relevance of DynamicDTA.
Availability and implementation  The source code is publicly available and can be accessed at https://​github.​com/​shmily-​ld/​
Dynam​icDTA.
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1  Introduction

An initial step in the drug discovery pipeline [1] is to iden-
tify molecules that bind to specific protein targets with high 
affinity and specificity, which can be further developed into 
drug-like molecules [2]. Drug-target binding affinity (DTA) 
is a crucial metric that quantifies the strength of interaction 
between a pair of drug and target protein, playing a pivotal 
role in the efficacy and specificity of potential therapeutic 
compounds [3]. Accurate prediction of DTA is essential in 
drug discovery [4, 5], as it facilitates virtual screening, lead 
optimization, and toxicity mitigation [6]. By prioritizing 
compounds with high affinity, guiding structural modifica-
tions, and predicting off-target interactions, DTA prediction 
reduces biochemical validation costs and accelerates the 
identification of druggable candidates, ultimately improv-
ing the efficiency of the drug discovery [7, 8].

Traditional experimental methods for measuring binding 
affinity, such as isothermal titration calorimetry and surface 
plasmon resonance, provide precise measurements but are 
often time-consuming, resource-intensive, and impractical 
for large-scale screening. To overcome these limitations, 
computational methods have emerged as efficient alter-
natives [9, 10]. These methods leverage data from public 
repositories like Kiba [11] and Davis [12] to predict binding 
affinities by leveraging the molecular and structural charac-
teristics of drugs and proteins. Among these computational 
strategies, deep learning has become a powerful approach 
[13], owing to its unparalleled capacity to model complex, 
non-linear relationships between input features [14].

Within the domain of deep learning-based DTA predic-
tion, methods can be broadly categorized into sequence-
based and structure-based approaches. Sequence-based 
models utilize the primary sequence information of drugs 
and proteins, providing a high-level abstraction of molecular 
characteristics. A seminal work in this domain, DeepDTA 
[15], demonstrated the utility of convolutional neural net-
work (CNN) in capturing local sequence patterns and inter-
actions, achieving substantial improvements over traditional 
methods. WideDTA [16] is further proposed to integrate four 
sources of text-based information. AttentionDTA [17] com-
bines an attention mechanism with the prediction of binding 
affinity, enhancing the extraction of relevant features from 
both drugs and protein sequences, resulting in a compre-
hensive deep learning-driven framework. Unlike static word 
embedding, DEAttentionDTA [18] integrates dynamic word 
encoding with multi-head self-attention, enabling multi-
scale feature interaction between drugs and target proteins. 

In contrast, structure-based models capitalize on the three-
dimensional conformational information of drugs and pro-
teins to provide a more granular representation of molecular 
interactions [19]. Such as, GraphDTA [20] employs graph 
neural network (GNN) to model molecular graphs, thereby 
facilitating a more nuanced understanding of molecular 
interactions. Similarly, DGraphDTA [21] represents pro-
teins as contact maps and utilizes GNN to simultaneously 
learn the features of both drugs and proteins, enhancing the 
accuracy of interaction predictions. ImageDTA [22] focuses 
on the 2D structure of drugs, treating drug 2D represen-
tations as “images” and processing them with multiscale 
2D-CNNs for better interpretability and performance. The 
known protein sequences [23] number in the billions, while 
the currently identified protein structures [24] represent 
only a small portion. In practice, obtaining the accurate 3D 
structure of the drug–target complex or even the protein 
itself is often challenging [25, 26]. Consequently, our work 
exclusively employs molecular graphs, bypassing the use of 
protein graphs.

A common limitation of most existing approaches is their 
reliance on static features of proteins, which fail to capture 
the inherently dynamic nature of these biomolecules. Pro-
teins are not rigid entities, and they undergo continuous 
structural fluctuations, including changes in atomic positions 
and binding postures, driven by their biological environ-
ment and functional role. These dynamic characteristics are 
critical for understanding key processes such as molecular 
recognition, allosteric regulation, and binding interactions 
[27]. By affecting the accessibility, shape, and compatibil-
ity of binding sites, protein dynamics directly influence the 
specificity and strength of drug–target interactions [28]. 
Extracting dynamic features allows models to capture this 
vital information, leading to more accurate predictions and 
a deeper understanding of protein function, ultimately facili-
tating more effective drug discovery.

To address this challenge, we propose DynamicDTA, an 
innovative framework designed to predict DTA by incor-
porating dynamic protein features derived from molecular 
dynamics (MD) simulations [29]. By integrating time-
dependent structural descriptors, such as root mean square 
fluctuation (RMSF) [30], DynamicDTA provides a more 
realistic representation of protein behavior. These dynamic 
features allow the model to capture temporal variations 
in protein conformations, thereby enhancing its ability to 
predict binding affinity. DynamicDTA introduces several 
innovations to advance the state-of-the-art methods in DTA 
prediction. First, it incorporates dynamic features derived 
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from molecular dynamics simulations into the model input. 
Second, it uses a cross-attention mechanism to learn both 
static and dynamic protein features, enabling the model to 
capture their interactions more effectively. Additionally, a 
tensor fusion network (TFN) [31] is employed to integrate 
multi-modal information from both drugs and proteins, 
ensuring comprehensive feature fusion. Comprehensive 
experiments have shown that DynamicDTA consistently 
outperforms seven state-of-the-art methods. Overall, our 
contributions are summarized as follows:

•	 We introduce DynamicDTA, an innovative framework 
that incorporates dynamic protein features derived from 
MD simulations, offering a more precise representation 
of protein behavior for predicting binding affinity.

•	 We leverage a cross-attention mechanism to capture 
both static and dynamic protein features, while a TFN 
seamlessly integrates multi-modal data from both drugs 
and proteins, enabling the model to effectively com-
bine diverse feature representations and enhance feature 
fusion.

•	 Comparison experiments on three datasets have shown 
that DynamicDTA outperforms seven state-of-the-art 
methods. Furthermore, a case study predicting potential 
drugs for Human Immunodeficiency Virus Type 1 show-
cases the model’s potential in accelerating drug discov-
ery.

2 � Materials and Methods

2.1 � Datasets

The protein dynamic descriptors are sourced from ATLAS 
dataset [32], which currently includes 1938 proteins and 
provides four types of protein dynamic features from MD 
simulations: 

(1)	 Avg.RMSF (average RMSF): This descriptor meas-
ures the fluctuation of each atom or residue from its 
average position during MD simulations. Specifically, 
it quantifies the root mean square deviation of atomic 
positions over time, providing insights into the flexibil-
ity of individual residues or regions within a protein. 
Typically, residues with high Avg.RMSF values are 
found in flexible regions such as loops or unstructured 
coils, which may be involved in essential protein func-
tions like substrate binding, enzymatic regulation, or 
protein-protein interactions [33]. Conversely, residues 
with low Avg.RMSF values are often located in rigid 
regions such as �-helices and �-sheets, which maintain 
structural stability and play a crucial role in preserving 
the overall protein conformation [34]. In drug design, 

regions with high RMSF values could serve as poten-
tial drug targets due to their dynamic adaptability in 
drug–target interactions [35].

(2)	 Avg.Gyr (average gyration radius): Gyr measures the 
overall compactness of the protein structure by calcu-
lating the average distance between the protein’s atoms 
and its center of mass. Avg.Gyr over the simulation 
period provides insight into the stability and folding of 
the protein. A smaller Avg.Gyr suggests a more com-
pact structure, which may indicate an active confor-
mation or a stable binding state with other molecules. 
Conversely, a larger Avg.Gyr may suggest a more 
extended protein conformation, potentially associated 
with dynamic processes such as folding, unfolding, or 
dissociation from other molecules [36]. Changes in the 
radius of gyration can reflect dynamic interactions and 
conformational transitions within the structure, which 
are essential for understanding their functional mecha-
nisms.

(3)	 Div.SE (minimum TM-score between start and final 
conformations): This descriptor quantitatively evalu-
ates the structural divergence between the initial and 
final conformations of a protein by employing TM-
score [37], which is a widely used metric for assess-
ing the similarity of protein structures. A high Div.
SE value indicates minimal structural changes during 
the simulation, suggesting that the protein maintains a 
stable conformation, which may imply high structural 
rigidity under physiological conditions, allowing it to 
perform its biological function effectively. Conversely, 
a low Div.SE value suggests significant conformational 
changes, which could be associated with the protein’s 
dynamic functionality, such as structural adaptations 
required for substrate binding or catalytic processes in 
enzymatic reactions [38, 39].

(4)	 Div.MM (minimum TM-score between most divergent 
conformations): This descriptor assesses the structural 
diversity of a protein by measuring TM-score between 
the most divergent conformations observed during the 
simulation. It captures the protein’s flexibility by identi-
fying how much its structure changes between its most 
extreme conformations. A high Div.MM value sug-
gests that, while the protein undergoes conformational 
changes, its overall structure remains similar, indicating 
flexibility without drastic rearrangements. Conversely, 
a low Div.MM value suggests significant conforma-
tional shifts, potentially linked to protein folding, allos-
teric regulation, or molecular interactions [40].

The affinity data are obtained from BindingDB [41], a 
comprehensive database of experimentally measured bind-
ing affinities, which contains 2.9 million entries across 
1.3 million compounds and 9400 targets. However, some 
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data points for Ki, Kd, and IC50, which are commonly used 
metrics to measure binding affinity [42], were missing in 
the dataset. To address this issue, we split the data into 
three subsets based on different affinity measures. Addi-
tionally, to ensure that the affinity values fall within a suit-
able range for modeling, we applied a negative logarithmic 
transformation. Taking Kd as an example, the transforma-
tion is applied using the following formula:

After the negative logarithmic transformation, some of the 
resulting values were negative. These values were removed, 
as they do not align with the expected range of affinity val-
ues. Finally, the values for K′

d
 range from 0.3 to 11.9, K′

i
 from 

0.0 to 14.2, and IC′
50

 from 0.0 to 12.6.
To integrate the protein dynamic features with the affin-

ity data, we perform a matching process based on PDB ID. 
As a result, three final datasets were crated, named as K∗

d
, 

K∗
i
, and IC∗

50
. Table 1 displays a summary of the key details 

of the three datasets.

(1)K
�
d
= −lg

(

Kd

1 × 109

)

We evaluated the model using five-fold cross-validation, 
as in AttentionDTA [17]. Each dataset was split into five 
parts, using one for testing and the rest for training in each 
fold. The final result were averaged across all folds. To fur-
ther assess the model’s generalization ability, we addition-
ally processed Kiba dataset [11] following the same pro-
cedure and ensuring that no proteins or drugs overlap with 
those in other datasets, resulting in a new dataset named 
Kiba∗. This external dataset was used to confirm the model’s 
ability to generalize to unseen data, providing further valida-
tion of its robustness.

2.2 � DynamicDTA Framework

As depicted in Fig. 1, the DynamicDTA framework consists 
of four key components: input representation, feature extrac-
tion, feature fusion, and output block. In the following sec-
tions, we will describe each part of the framework in detail.

2.2.1 � Input Representation

The DynamicDTA model takes three types of input data: 
ligands, targets, and dynamics. In what follows, we provide 
a detailed description of each input representation.

Ligand representation. Ligands in this study are repre-
sented using the simplified molecular input line entry sys-
tem (SMILES), a standardized and compact notation for 
encoding molecular structures as linear text strings [43]. 
To utilize the structural and chemical information captured 
by SMILES, we convert these strings into graph-based rep-
resentations. The process begins by parsing each SMILES 
string into a molecular graph using the open-source chemical 

Table 1   Summary of the datasets

Dataset Targets Ligands Binding entities

K∗
d

63 1609 2896
K∗

i
74 18,872 27,106

IC∗
50

136 45,525 86,236
Kiba

∗ 4 1597 3708

Fig. 1   The architecture of DynamicDTA. The framework integrates 
drug molecular graph, target sequences and dynamic descriptors, and 
a cross-attention mechanism to extract meaningful representations. 

TFN is employed to effectively fuse the extracted features for accu-
rate drug–target binding affinity prediction
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informatics software RDKit [44]. In this graph, atoms serve 
as nodes, while chemical bonds act as edges. Each atom 
is represented by a feature vector that encapsulates critical 
atomic properties, including atomic number, valence, and 
aromaticity. These feature vectors are normalized to main-
tain numerical stability across different molecular graphs. 
Bond information is extracted as pairs of indices indicating 
whether there is a bond between two atoms in the graph.

Target representation. For target protein representation, 
each protein sequence is converted into a numerical vec-
tor using a predefined mapping of amino acid characters 
to integers. Each amino acid residue is assigned a unique 
integer, and characters not found in the mapping are assigned 
a default value of 0. To address the variation in protein 
sequence lengths, we define a fixed maximum length of 
1000. Sequences longer than this threshold are truncated, 
while shorter sequences are padded with 0. This standardiza-
tion ensures that all protein sequences have the same length, 
enabling efficient batch processing and maintaining consist-
ent input dimensions for the model.

Dynamic representation. In this study, we focus on four 
key dynamic features to represent the dynamic nature of 
proteins: Avg.RMSF, Avg.Gyr, Div.SE, and Div.MM. To 
standardize these dynamic descriptors and make them com-
parable across proteins, we perform min-max normalization 
on each feature. Specifically, for a feature x,  the normaliza-
tion is defined as

where xmin and xmax represent the minimum and maximum 
values of feature x across the dataset. After normalization, 
the four dynamic features are concatenated into a single 
4-dimensional vector. This vector serves as a comprehen-
sive representation of the protein’s dynamic behavior, cap-
turing key aspects such as flexibility, structural transitions, 
and potential binding site changes, which are crucial for 
understanding drug–target interactions. The integration of 
these dynamic features improves the model’s capacity to 
predict binding affinities by accounting for the protein’s con-
formational flexibility and structural transitions, making this 
approach a significant innovation in DTA prediction.

2.2.2 � Feature Extraction

Graph Encoder. To extract meaningful features from the 
graph representation of a ligand, we utilize a graph convo-
lutional network (GCN) to learn a graph-level representation 
that represents its molecular architecture. Given a ligand 
represented by graph G = (V ,E), where V is the set of N 
nodes, each node has an associated feature vector xi ∈ ℝ

C, 
and E is the set of edges described by the adjacency matrix 

(2)xnorm =
x − xmin

xmax − xmin

A ∈ ℝ
N×N . GCN uses the node feature matrix X and the 

adjacency matrix A as inputs. The propagation rule for GCN 
is given by

where Ã = A + IN is the adjacency matrix with self-con-
nections, D̃ is the degree matrix of Ã, W(l) is the learnable 
weight matrix at layer l,  and � is a non-linear activation 
function. After several layers, a global max pooling opera-
tion is applied to obtain a final feature vector of ligand Xl.

Sequence Encoder. Previous studies have shown that 
dilated convolution [45] is an effective technique for cap-
turing multiscale contextual information by expanding the 
receptive field through different dilation rates [46]. Inspired 
by this, we apply dilated 1D convolutions to model long-
range intramolecular interactions in protein sequences. 
While a standard 1D convolution operates on adjacent ele-
ments of the sequence with a fixed receptive field, the dilated 
1D convolution increases the spacing between the filter ele-
ments, allowing it to effectively capture dependencies over 
long distances in the sequence without increasing the num-
ber of parameters. The dilated convolution operation for a 
given input sequence S = {s1, s2,… , sN}, where si represents 
the feature vector of amino acid i,  is performed as follows:

where w(l)

j
 are the weights of the convolutional filter at layer 

l,  rj denotes the dilation rate for the j-th filter, K is the filter 
size, and b(l) is the bias term. Similar to the ligand represen-
tation, after passing through the dilated convolutions, the 
final feature vector of target Xt is obtained by applying a 
global max pooling operation.

Vector Encoder. The dynamic features of each protein 
are represented as a normalized 4-dimensional vector Vd. 
To extract high-level representations, the normalized vector 
Vd is passed through a multi-layer perceptron (MLP). The 
transformation at each MLP layer is defined as

where X(0)

d
= Vd is the input vector, W(l) and b(l) represent the 

weight matrix and bias vector for the l-th layer, respectively. 
The final output Xd is a compact feature vector that captures 
the essential information from the dynamic descriptors.

Cross Attention Mechanism. To effectively integrate 
complementary information between the target sequence 
vector Xt and the dynamic vector Xd, we employ a multi-
head cross attention mechanism, which captures bidirec-
tional interactions, enabling Xt to utilize information from 

(3)H(l+1) = 𝜎

(

D̃
−1∕2

ÃD̃
−1∕2

H(l)W(l)
)

(4)h
(l)

i
= �

(

K
∑

j=1

w
(l)

j
si+rj + b(l)

)

(5)X
(l+1)

d
= �

(

W(l)X
(l)

d
+ b(l)

)
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Xd, and Xd to incorporate information from Xt. Initially, 
the target and dynamic vectors are linearly transformed to 
compute their respective query, key, and value matrices 
for each head:

where each head i = 1,… ,H, where H is the number of 
attention heads, and Wt,(i)

Q
, Wd,(i)

K
, and Wd,(i)

V
 are learnable 

weight matrices. The attention computation for the i-th head 
is given by

where dK is the dimension of the key matrices. The multi-
head outputs are concatenated along the feature dimension 
and then passed through a learned linear transformation:

where WO
t
 is the output projection matrix. Similarly, to ena-

ble the dynamic vector Xd to attend to the target vector Xt, 
the corresponding query, key, and value matrices for each 
head are computed as

The attention computation for the i-th head is

The multi-head outputs are concatenated along the fea-
ture dimension and then passed through a learned linear 
transformation:

The model effectively fuses complementary information 
from both vectors using the multi-head cross-attention 
mechanism, attending to each other in parallel and enrich-
ing their representations with contextual dependencies. This 

(6)Q
(i)
t = W

t,(i)

Q
Xt

(7)K
(i)

d
= W

d,(i)

K
Xd

(8)V
(i)

d
= W

d,(i)

V
Xd

(9)A
(i)
t = Softmax

�

Q
(i)
t (K

(i)

d
)⊤

√

dK

�

V
(i)

d

(10)X
�
t
= Concat(A

(1)
t
,… ,A

(H)
t

) ⋅WO
t

(11)Q
(i)

d
= W

d,(i)

Q
Xd

(12)K
(i)
t = W

t,(i)

K
Xt

(13)V
(i)
t = W
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V
Xt.

(14)A
(i)

d
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�

Q
(i)

d
(K
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⊤

√
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�

V
(i)
t .

(15)X
�
d
= Concat(A

(1)

d
,… ,A

(H)

d
) ⋅WO

d

results in more informative and context-aware feature repre-
sentations for both the target sequence and dynamic features.

2.2.3 � Feature Fusion

We use TFN [31] to integrate the features X′
t
, X′

d
, and Xl 

from the target, dynamics, and ligand, respectively. Specifi-
cally, we augment each modality’s representation by adding 
an extra constant dimension with a value of 1. The extended 
representations are given by

Next, we fuse the information from the three extended 
feature vectors, X̃l, X̃t, and X̃d, by computing their outer 
product:

where ⊗ denotes the outer product operation, X̃t ⊗ X̃d ⊗ X̃l 
is the higher-order tensor that captures interactions across 
unimodal, bimodal, and trimodal features, and Wf and bf are 
learnable parameters. Xf represents the final fused feature. 
TFN explicitly captures the complex interactions between 
ligand, target and dynamic features, facilitating the seamless 
integration of multimodal information into a comprehensive, 
high-dimensional feature representation.

2.2.4 � Prediction and Training Module

The prediction module employs fully connected layers 
(FCLs) to process the fused feature vector Xf obtained from 
TFN. ReLU is used as the activation function in each layer 
to capture complex nonlinear patterns, leading to the predic-
tion of the final binding affinity score ŷ. DTA prediction is 
framed as a regression problem [47]. The model is optimized 
to minimize the mean squared error (MSE) loss function, 
which is defined as

where yi denotes the actual binding affinity of the i-th sam-
ple, ŷi represents the predicted binding affinity, while M rep-
resents the total number of samples.

3 � Result

In this section, we introduce and evaluate the performance 
of model with comparison to baseline methods, followed 
by a case study that demonstrates its practical application.

(16)X̃l =

[

Xl

1

]

X̃t =

[

X�
t

1

]

X̃d =

[

X�
d

1

]

.

(17)Xf = Wf ⋅

(

X̃t ⊗ X̃d ⊗ X̃l

)

+ bf

(18)L =
1

M

M
∑

i=1

(

y
i
− ŷ

i
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3.1 � Experimental Settings

The DynamicDTA model was implemented using PyTorch 
and trained on a Linux server with 12 CPUs and an Nvidia 
GeForce RTX 4090 GPU with 24 GB of VRAM. We set the 
number of epochs to 1000, the batch size to 512, and the 
learning rate to 5 × 10−4, respectively. These hyperparam-
eters were chosen to ensure efficient training and conver-
gence of the model. Additionally, we set the number of GCN 
hidden layers to 3, the attention heads to 4, the embedding 
dimension to 64 and the dropout rate to 0.2 to prevent over-
fitting, respectively. Other detailed model parameters can be 
found in the source code. The Adam optimizer [48] was used 
to update the model parameters, and MSE was employed 
as the loss function. To ensure robust evaluation, five-fold 
cross-validation was performed across all datasets.

3.2 � Baseline Methods

To assess the performance of our model, we compared the 
proposed DynamicDTA with seven baseline methods for 
DTA prediction, including two traditional machine learning 
models implemented with scikit-learn library and five state-
of-the-art deep learning-based approaches. The deep learn-
ing baselines were implemented using the source code pro-
vided in the original papers, while the traditional machine 
learning models were built using standard implementations, 
without any additional tuning. The seven models used for 
comparison are the following:

•	 Linear Regression employs label encoding on drug 
SMILES and protein sequences, using concatenated vec-
tors for linear affinity prediction.

•	 Decision Tree applies the same label encoding followed 
by decision tree regression with feature space partition-
ing.

•	 DeepDTA [15] employs CNN to process protein 
sequences and drug SMILES representations for 
DTA prediction.

•	 GraphDTA [20] employs GNN to extract and learn 
molecular graph structural representations, combined 
with protein sequence embeddings for binding affinity 
prediction.

•	 AttentionDTA [17] employs an attention-based architec-
ture to enhance the extraction of relevant features from 
drug SMILES and protein sequences.

•	 DEAttentionDTA [18] uses a 1D CNN for dynamic 
word embedding and captures interactions between drugs 
and proteins features by integrating a self-attention mech-
anism.

•	 ImageDTA [22] leverages a multiscale 2D CNN to pro-
cess SMILES-encoded molecules and enhances inter-
pretability through convolutional kernel size selection.

3.3 � Evaluation Metrics

To quantitatively evaluate the predictive performance of our 
DTA model, we employ two widely used metrics, the root 
mean square error (RMSE, denoted by eRMSE ) as well as the 
Pearson correlation coefficient (R). The specific formulas 
are as follows:

where eRMSE measures the average magnitude of predic-
tion errors, with lower values indicating better prediction 
accuracy. R measures the linear relationship between the 
predicted and true values, with higher values indicating a 
stronger correlations between them.

3.4 � Comparison Results

Table 2 summarizes the comparison performance of Dynam-
icDTA with seven baseline methods on three datasets. The 
results demonstrate that our model consistently outperforms 
all baseline methods. On the Kd

∗ dataset, DynamicDTA 
achieves a notable improvement, surpassing GraphDTA, 
the second-best model, by 2.2% in eRMSE and 1.4% in R. 
Similarly, on the Ki

∗ dataset, DynamicDTA again outper-
forms the second-best method, with improvement of 6.5% 
in eRMSE and 2.6% in R. However, on the IC50

∗ dataset, while 
DynamicDTA achieves the highest R, it falls slightly behind 
ImageDTA in eRMSE. This discrepancy may stem from the 
nature of the IC50 metric, which focuses more on a drug’s 
inhibitory effects rather than directly correlating with bind-
ing affinity [49, 50]. Furthermore, ImageDTA places greater 
emphasis on drug-specific features, which could explain its 
slight advantage in this specific metric. Traditional machine 
learning models perform poorly compared to deep learning-
based methods like DeepDTA due to their reliance on hand-
crafted features, which may not fully capture the complex 
interactions between drugs and proteins. In contrast, deep 
learning models automatically extract hierarchical features, 
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leading to better generalization and performance for DTA 
prediction.

Figure 2 shows the predictive performance of Dynam-
icDTA in comparison to DEAttentionDTA, using scatter 
plots of true versus predicted binding affinities. This com-
parison reveals that DynamicDTA demonstrates a tighter 
clustering of points along the diagonal, indicating more 
accurate predictions across a wider range of binding affini-
ties. The difference in predictive performance between 
DynamicDTA and DEAttentionDTA stems from the unique 
features of each model. While DEAttentionDTA uses 

dynamic word embeddings and self-attention for linear pro-
tein and ligand sequences, DynamicDTA improves this by 
integrating graph-based ligand representations and dynamic 
protein features. This allows DynamicDTA to better cap-
ture the structural complexity and flexibility of drug–target 
interactions, with dynamic protein descriptors from MD 
simulations further enhancing its ability to model protein 
dynamics.

Table 2   Comparison 
performance of DynamicDTA 
and baseline methods on three 
datasets

The best results are represented in bold, and the second-best results are underlined

Model IC
50

∗
K
d

∗
K
i

∗

e
RMSE

(std) ↓ R(std) ↑ e
RMSE

(std) ↓ R(std) ↑ e
RMSE

(std) ↓ R(std) ↑

Linear regression 1.293(0.035) 0.412(0.005) 1.648(0.131) 0.322(0.067) 1.374(0.020) 0.538(0.010)
Decision tree 1.190(0.049) 0.662(0.007) 1.369(0.078) 0.716(0.032) 1.321(0.018) 0.586(0.008)
DeepDTA 0.792(0.089) 0.887(0.002) 1.312(0.139) 0.754(0.065) 0.904(0.019) 0.839(0.004)
GraphDTA 0.625(0.008) 0.918(0.002) 1.029(0.054) 0.816(0.015) 0.792(0.017) 0.866(0.011)
AttentionDTA 0.702(0.020) 0.897(0.007) 1.119(0.042) 0.786(0.014) 0.861(0.021) 0.850(0.005)
DEAttentionDTA 0.846(0.053) 0.847(0.020) 1.157(0.189) 0.759(0.089) 1.058(0.112) 0.757(0.065)
ImageDTA 0.600(0.053) 0.853(0.010) 1.595(0.157) 0.780(0.010) 0.896(0.030) 0.804(0.003)
DynamicDTA 0.611(0.006) 0.923(0.002) 1.007(0.050) 0.830(0.012) 0.727(0.017) 0.892(0.003)

Fig. 2   The performance of DEAttentionDTA (a) and DynamicDTA (b) on three datasets for the prediction of DTA
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3.5 � Ablation Study

In this section, we performed an ablation study to evaluate 
the contribution of each component in the model. Specifi-
cally, we analyzed the effect of dilated convolution, dynamic 
descriptors, and different feature fusion strategies. These 
analyses allow us to quantify the importance of each com-
ponent and provide deeper insights into their influence on 
DTA prediction.

3.5.1 � Ablation on Dilated Convolution

We replaced dilated convolutions with standard convolutions 
to assess their role in feature extraction. In this experiment, 
w/o Dilated denotes the use of standard convolutions instead 
of dilated convolutions. The results of this ablation study 
are summarized in Table 3. The substitution of dilated con-
volutions with standard convolutions resulted in a decline 
in both eRMSE and R metrics, highlighting the importance 
of dilated convolutions in capturing multi-scale features for 
better predictive performance.

3.5.2 � Ablation on Dynamic Descriptors

We conducted a series of ablation experiments on dynamic 
protein descriptors to evaluate their impact on model per-
formance. In these experiments, w/o RMSF+Gyr indicates 
the removal of RMSF and Gyr from DynamicDTA, while 
w/o SE+MM represents the exclusion of SE and MM. Simi-
larly, w/o RMSF+Gyr+SE and w/o Gyr+SE+MM corre-
spond to the removal of these respective sets of dynamic 
descriptors, allowing us to analyze their contributions to the 
model. Table 3 summarizes the results of this ablation study. 
Removing dynamic protein features led to a decline in model 
performance, with the impact being more pronounced when 
multiple features were excluded. The removal of RMSF and 
Gyr alone resulted in only minor performance fluctuations, 
suggesting that RMSF, which captures residue-level flexibil-
ity, and Gyr, which reflects overall structural compactness, 

may be partially redundant. In contrast, when Gyr, SE, and 
MM were simultaneously removed, the model exhibited 
a significant decline in performance. This shows that SE, 
which represents the minimum TM-score between the ini-
tial and final conformations, and MM, which captures the 
minimum TM-score between the most structurally divergent 
conformations, together provide critical insights into large-
scale conformational changes. The substantial performance 
drop upon their removal highlights the importance of these 
descriptors in capturing protein structural transitions and 
flexibility, which are crucial for accurate binding affinity 
prediction.

3.5.3 � Ablation on Feature Fusion

To further evaluate the effectiveness of our feature fusion 
approach, we conducted additional experiments comparing 
different fusion methods, including Concat, Sum, Average, 
Hadamard product, and ours (TFN). In the Concat method, 
drug, target, and dynamic features are concatenated along 
the feature dimension. The Sum method aggregates these 
features by element-wise addition, while the Average 
method further normalizes the sum by dividing the number 
of modalities. The Hadamard product method performs ele-
ment-wise multiplication of the feature representations. Each 
fusion method was applied before passing the combined fea-
tures to the final prediction layer. As shown in Table 4, the 
TFN-based fusion method achieves the best performance 
across all datasets, with the lowest eRMSE and highest R. Tra-
ditional fusion methods such as Concat and Sum perform 
slightly worse, suggesting that TFN better captures complex 
feature interactions for improved binding affinity predic-
tion. This improvement can be attributed to TFN’s ability 
to model higher-order correlations between features, which 
are often crucial for understanding intricate biomolecular 
interactions. Moreover, the enhanced performance across 
multiple datasets further demonstrates the robustness and 
generalization capability of the TFN approach.

Interestingly, the performance improvement observed 
in the Ki

∗ dataset was more pronounced than that in other 

Table 3   Ablation study on three datasets

The best results are represented in bold

Model IC
50

∗
K
d

∗
K
i

∗

e
RMSE

(std) ↓ R(std) ↑ e
RMSE

(std) ↓ R(std) ↑ e
RMSE

(std) ↓ R(std) ↑

w/o Dilated 0.611(0.006) 0.923(0.002) 1.021(0.053) 0.824(0.012) 0.732(0.011) 0.890(0.002)
w/o RMSF+Gyr 0.611(0.009) 0.923(0.003) 1.018(0.047) 0.826(0.011) 0.735(0.013) 0.889(0.002)
w/o SE+MM 0.614(0.007) 0.920(0.001) 1.041(0.048) 0.820(0.012) 0.760(0.015) 0.890(0.004)
w/o RMSF+Gyr+SE 0.613(0.007) 0.922(0.002) 1.023(0.045) 0.825(0.011) 0.742(0.016) 0.887(0.005)
w/o Gyr+SE+MM 0.613(0.005) 0.922(0.001) 1.031(0.051) 0.821(0.015) 0.751(0.019) 0.884(0.005)
DynamicDTA 0.611(0.006) 0.923(0.002) 1.007(0.050) 0.830(0.012) 0.727(0.017) 0.892(0.003)
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datasets, both in the ablation and comparison experiments. 
This can be attributed to the inherent characteristics of the 
dataset. As shown in Fig. 3, the affinity distribution across 
the three datasets further highlights this difference. Specifi-
cally, the binding affinities in the Ki

∗ dataset are more con-
centrated, which simplifies the prediction task. This con-
centration enables the model to generalize better, making 
it more responsive to the contributions of each component.

3.6 � Parameter Sensitivity Analysis

In this section, we systematically investigate the influence of 
four critical hyperparameters in our DynamicDTA model: 
the dropout rate P of the regularization, the dilation rate D 
of the dilated convolution, the number of attention heads H 
in the cross-attention layer, and the number of GCN hidden 
layers L for ligands.

We first examine the effect of the dropout rate P,  which 
controls the regularization strength to prevent overfitting. 
We evaluated P values from the set {0.1, 0.2, 0.3, 0.4}. As 
shown in Fig. 4a, the model achieves the best performance 
when P = 0.2. A lower dropout rate may lead to overfitting, 
while a higher dropout rate may excessively reduce the 
model’s capacity.

Next, we analyze the dilation rate D in the dilated convo-
lution module, considering values from {2, 4, 6, 8}. Figure 4b 
shows that the optimal performance is achieved at D = 4. 

A small dilation rate may limit the receptive field, making 
it difficult to capture long-range dependencies, whereas an 
excessively large dilation rate may dilute local information.

For the cross-attention layer, we evaluate different num-
bers of attention heads H from the set {2, 4, 8, 16}. As illus-
trated in Fig. 4c, the model achieves the optimal perfor-
mance when H = 4. Increasing H can improve the model’s 
ability to capture diverse interactions, but an excessive num-
ber may result in overfitting or oversmoothing.

Finally, we investigate the effect of the number of GCN 
hidden layers L for ligand representation, testing values from 
{1, 3, 5, 7}. Figure 4d indicates that the best performance 
is achieved when L = 3. A shallow network may lack the 
capacity to extract complex patterns, while an overly deep 
network may suffer from gradient vanishing and overfitting.

3.7 � External Dataset for Validation

To further evaluate the generalization capability of our 
DynamicDTA model, we apply the trained model directly 
to the Kiba∗ dataset without fine-tuning. Since we performed 
five-fold cross-validation, we tested the best-performing 
model from each fold on the Kiba∗ dataset, and the final 
performance is reported as the average of these results. 
Table 5 presents the performance comparison between our 
model and baseline methods in terms of eRMSE and R. The 
results show that DynamicDTA outperforms the baseline 

Table 4   Comparison of feature 
fusion methods on three 
datasets

The best results are represented in bold, and the second-best results are underlined

Fusion method IC
50

∗
K
d

∗
K
i

∗

e
RMSE

(std) ↓ R(std) ↑ e
RMSE

(std) ↓ R(std) ↑ e
RMSE

(std) ↓ R(std) ↑

Concat 0.618(0.007) 0.921(0.002) 1.008(0.044) 0.825(0.010) 0.763(0.023) 0.880(0.005)
Sum 0.616(0.010) 0.920(0.003) 1.144(0.040) 0.813(0.015) 0.751(0.010) 0.883(0.012)
Average 0.618(0.005) 0.919(0.002) 1.122(0.010) 0.823(0.030) 0.793(0.019) 0.866(0.010)
Hadamard product 0.620(0.006) 0.920(0.005) 1.115(0.023) 0.821(0.020) 0.730(0.015) 0.877(0.007)
Ours 0.611(0.006) 0.923(0.002) 1.007(0.050) 0.830(0.012) 0.727(0.017) 0.892(0.003)

Fig. 3   Affinity distribution comparison across datasets: a IC
50

∗ dataset. b K
d

∗ dataset. c K
i

∗ dataset
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methods on the Kiba∗ dataset, achieving approximately a 
4.3% improvement in eRMSE and a 13% improvement in R 
over the second-best model. Note that since no fine-tuning 
was performed on the Kiba∗ dataset, the absolute perfor-
mance is not very high (e.g., eRMSE is around 1.0 and R is 
typically around 0.9 in comparison experiments, as shown in 
Table 2). These results further highlight the better generali-
zation ability of the DynamicDTA model, demonstrating its 
robustness and effectiveness across different datasets without 
requiring additional fine-tuning.

3.8 � Interpretation and Application

In this section, we analyze the model’s interpretability by 
visualizing the attention weights assigned to protein residues 

and conducting a case study to explore how the model makes 
predictions from a dynamic perspective.

3.8.1 � Interpretability Analysis

Inspired by NHGNN-DTA [51] that employs attention 
weight visualization for interpretability analysis, we con-
ducted a similar analysis on the DynamicDTA model. Spe-
cifically, we examined the cross-attention weights assigned 
to protein residues, as our model applies the attention mech-
anism exclusively to protein features, integrating protein 
sequence features and dynamic descriptors. Since the drug 
features are processed without an attention mechanism, we 
visualized only the attention weights associated with pro-
tein residues to identify critical binding regions prioritized 
by the model during DTA prediction. For this analysis, the 
2FOS drug–target complex from the RCSB Protein Data 
Bank (RCSB PDB) was selected as a representative case. 
This crystallographically resolved structure contains two 
distinct ligand-binding sites, providing an ideal framework 
for validating the model’s interpretability.

As illustrated in Fig. 5, the 2FOS complex exhibits two 
ligand-binding pockets, labeled (1) and (2) in the schematic 
representation. The model accurately localized residues 
within these functional regions. In the attention map, the 
top 20 residues with the highest attention weights are color-
coded: red denotes correctly identified binding residues, 
while cyan indicates residues with erroneously elevated 
attention weights. Notably, the high-attention regions (red) 
exhibit strong spatial overlap with experimentally vali-
dated binding sites, demonstrating the model’s capability to 

Fig. 4   Parameter sensitivity analysis in the K
i

∗ dataset: a Dropout rate P. b Dilation rate D. c Attention heads H. d GCN hidden layers L 

Table 5   Generalization performance comparison on the Kiba∗ dataset

The best results are represented in bold, and the second-best results 
are underlined

Model e
RMSE

(std) ↓ R(std) ↑

Liner regression 6.615(0.020) − 0.056(0.008)
Decision tree 5.636(0.015) − 0.071(0.006)
DeepDTA 6.212(0.010) 0.072(0.003)
GraphDTA 5.954(0.023) 0.176(0.007)
AttentionDTA 5.323(0.015) 0.093(0.005)
DEAttentionDTA 5.816(0.012) − 0.015(0.005)
ImageDTA 5.599(0.008) 0.010(0.004)
DynamicDTA 5.090(0.013) 0.202(0.002)
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effectively identify pharmacologically relevant interactions. 
A detailed examination of binding site (1) reveals that the 
model successfully recognizes three key interacting residues: 
HIS-4, HIS-15, and ASP-19 (highlighted in red). These resi-
dues are known from crystallographic studies to form hydro-
gen bonds and electrostatic interactions with the ligand, a 
finding consistent with the model’s attention patterns. This 
alignment between computational predictions and experi-
mental structural data reinforces the biological plausibility 
of DynamicDTA’s decision-making process.

This analysis provides insights into how the Dynam-
icDTA model focuses on key residues involved in ligand 
binding and highlights the model’s ability to predict these 
critical interactions. The inclusion of attention weight visu-
alization further strengthens the model’s interpretability 
and aids in understanding the underlying mechanisms of 
drug–target interactions.

3.8.2 � Case Study

In case study, we applied the DynamicDTA model to predict 
potential drugs that target Human Immunodeficiency Virus 
Type 1 (HIV-1, PDB ID: 4JMU). We first extracted dynamic 
features of this target from our dataset and paired them with 
drug–target pairs from the DrugBank database. These pairs 
were subsequently input into the model to predict the affinity 

between each drug–target protein pair. After ranking the 
drugs based on their predicted affinity, we cross-checked the 
top candidates with PubMed1 to gather supporting evidence 
regarding their potential therapeutic effects against HIV-1. 
The results, presented in Table 6, list the top 10 predicted 
drugs. These findings highlight the potential of our model 
in accelerating drug discovery.

Fig. 5   Visualization of drug–target interactions in the 2FOS complex, 
which consists of two distinct ligand-binding regions. The model’s 
attention weights for the top 20 residues are highlighted, where cor-
rectly identified binding residues are shown in red, and misidentified 

residues are shown in cyan. The two smaller panels on the right pro-
vide zoomed-in views of the two distinct ligand-binding regions from 
the left panel. These views are rotated to optimal angles to offer a 
clearer perspective of the binding interactions

Table 6   The top 10 predicted potential drugs targeting HIV-1

The drugs with related evidence found in PubMed are represented in 
bold

Rank Drug name DrugBank ID Evidence

1 L-methionine (R)-S-oxide DB02235 Unconfirmed
2 Procainamide DB01035 Unconfirmed
3 Oseltamivir DB00198 PMID: 36067538
4 Hypochlorite DB11123 PMID: 10773730
5 Tromethamine DB03754 PMID: 34602806
6 Isoleucine DB00167 PMID: 34454514
7 Bendazac DB13501 Unconfirmed
8 3-Bromo-7-Nitroindazole DB01997 Unconfirmed
9 Deferiprone DB08826 PMID: 27191165
10 Formaldehyde DB03843 PMID: 37632035

1  https://​pubmed.​ncbi.​nlm.​nih.​gov/.

https://pubmed.ncbi.nlm.nih.gov/
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To gain deeper insights into the interactions between the 
predicted drugs and the target protein, we performed a series 
of visualizations and analyses. First, we utilized the Deep-
Mice2 online molecular docking [52] web server to dock the 
top three predicted candidate drugs with the target protein, 
generating corresponding drug-protein complexes. These 
complexes were subsequently visualized using PyMOL,3 as 
shown in Fig. 6a. These visualizations illustrate the residue 
regions involved in the interactions between each drug and 
the HIV-1 target. Notably, Fig. 6a presents both the docking 
score and the predicted binding affinity. It is important to 
emphasize that these two metrics reflect different aspects 

of the drug–target interaction. The docking score, shown in 
the figure, is already relatively high, indicating strong bind-
ing potential, while the predicted binding affinity provides a 
quantitative estimate of the actual interaction strength.

We further analyzed the dynamic properties of the target 
protein at the residue level. Specifically, we visualized the 
RMSF values of each residue, mapping the values to a color 
gradient to highlight regions of varying flexibility. As shown 
in Fig. 6b, the left panel presents the 3D structure of the 
protein visualized in PyMOL, while the right panel depicts 
the sequence-based visualization of RMSF values. Notably, 
some residues involved in drug binding, such as SER-77, 
exhibit low RMSF values, suggesting that these regions 
are rigid concave surfaces, which are commonly observed 
binding sites for small-molecule ligands. In contrast, resi-
dues like LEU-21 display higher RMSF values, indicating 

Fig. 6   Comprehensive analysis of drug-protein interactions and 
dynamic properties of the target protein. a Docking of the top three 
predicted drug candidates with the HIV-1 target protein, highlighting 
key binding residues. b Visualization of residue-level RMSF values 
mapped onto the 3D protein structure (left) and sequence (right), 
illustrating rigid and flexible regions. c PocketMiner-predicted likeli-

hood of each residue contributing to a cryptic binding pocket, with 
higher values indicating potential transient binding sites. d Line plot 
of RMSF values along the residue index, with blue dots marking resi-
dues involved in drug binding, demonstrating the correlation between 
binding sites and dynamic properties

2  http://​www.​deepm​ice.​com/.
3  https://​www.​pymol.​org/.

http://www.deepmice.com/
https://www.pymol.org/
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increased flexibility. We hypothesize that these high-RMSF 
regions may correspond to cryptic binding sites [53], which 
are transient pockets that emerge due to protein conforma-
tional changes. To validate this hypothesis, we employed the 
PocketMiner [54] model, a specialized tool for predicting 
the likelihood of individual residues contributing to cryptic 
pocket formation. The results, shown in Fig. 6c, illustrate 
a strong correlation between high RMSF values and an 
increased likelihood of forming cryptic pockets. However, 
it is worth noting that some residues with high RMSF values 
do not significantly contribute to pocket formation, likely 
due to their inherent instability, which prevents stable drug 
binding.

Furthermore, Fig. 6d presents a line plot of RMSF val-
ues across the residue index, with blue dots highlighting the 
binding residues identified in the molecular docking study 
(Fig. 6a). This visualization clearly demonstrates that certain 
binding residues reside in low-RMSF regions, reinforcing 
the idea that stable, rigid concave surfaces often serve as 
primary binding sites. Meanwhile, other binding residues 
are located in high-RMSF regions, corresponding to cryptic 
pockets.

Overall, this case study demonstrates that our Dynam-
icDTA model effectively captures the dynamic properties of 
target proteins, offering valuable insights into potential drug-
binding regions and accelerating the drug discovery process.

4 � Discussion and Conclusion

Accurately predicting drug–target binding affinity (DTA) 
is crucial in drug discovery. Existing methods often rely 
on static protein and drug representations, neglecting the 
dynamic nature of molecular interactions. To address this, 
we propose DynamicDTA, a framework that integrates 
dynamic protein features with graph-based drug represen-
tations to model complex drug–target interactions. Specifi-
cally, a cross-attention mechanism is introduced to capture 
both static and dynamic protein features, while a TFN 
seamlessly integrates multi-modal data from both drugs 
and proteins. Comparison experiments on three datasets 
demonstrate that DynamicDTA outperforms state-of-the-art 
methods. Moreover, a case study predicting potential drugs 
for HIV-1 further illustrates the model’s capability in expe-
diting the drug discovery process. However, we acknowledge 
several limitations in this study. First, the reliance on MD-
derived dynamic descriptors may limit the model’s applica-
bility to real world where MD simulations are computation-
ally expensive, and comprehensive MD data are not always 
available. Second, inconsistencies in experimental bind-
ing affinity measurements across datasets could introduce 
noise, affecting model performance and generalizability. 

Addressing these issues will be crucial for future improve-
ments. To overcome these limitations, in future work, we 
plan to explore generative AI-based approaches, such as dif-
fusion models [55, 56], to simulate MD data for proteins that 
lack experimental structures, reducing the computational 
burden while preserving essential dynamic information.
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