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Abstract

Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their
usefulness in biomedical applications, especially in drug–drug interactions (DDIs). DDIs refer to a change in the effect of one drug to
the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction
through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI
and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the
design of computational methods. This review summarizes chemical structure based, network based, natural language processing
based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with
different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph
neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning
methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep
and graph learning models for accelerating DDIs prediction.
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INTRODUCTION
Polypharmacy is progressively becoming the prevalent therapy by
a patient for one or more conditions, especially for older patients
with many chronic health conditions, and this trend continues to
grow because of aging populations. For example, 67% of elderly
Americans were taking five or more medications [1]. This can
be baffling because potential drug interactions can alter the
intended responses when patients taking multiple drugs simul-
taneously, which results in unexpected side effects or decreases
clinical efficacy [2]. These unintended interactions are widely

referred to as drug–drug interactions (DDIs). As a common prob-
lem during polypharmacy, DDIs are associated with about 30%
of all reported adverse drug effects that becomes one of the
most leading causes of trial failures in drug discovery and clinical
research [3, 4]. Take Ondansetron (Zofran) and dofetilide (Tikosyn)
as an example. The former is a medication used to prevent nausea
and vomiting, and the latter is used for heart rhythm. When they
are used together, the amount of time between heartbeats can
get too long. This can lead to dizziness, fainting and even death in
severe cases. As a result, predicting potential DDIs in advance is
crucial for drug development and pharmacovigilance.
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Figure 1. The taxonomy of computational methods with representative examples. The computational approaches can be divided into chemical structure
based, network based, NLP based and hybrid method, respectively. Chemical structure based methods learn the structural and chemical features of
molecules by using the similarity functions. These methods can be further classified into similarity based, molecular graph based and substructure
based methods. Network based methods that mainly rely on the topological characteristics of drugs in related networks integrate biological information
from different data sources, which can be further classified into graph embedding, link prediction and knowledge graph based methods. Natural language
processing (NLP) based methods adopt the unsupervised and pretraining strategies in NLP to learn contextual information from large unlabeled molecular
datasets. Hybrid methods combine with multiple types of features in an efficient pattern.

Identifying the existence of DDIs is the first step to avoid the
potential adverse effects. Generally, DDIs can be broadly catego-
rized into pharmaceutical, pharmacokinetic (PK) or pharmacody-
namic (PD). Importantly, DDIs that primarily cause a change in PK
will consequently lead to a secondary alteration in its PD. Thus,
classifying DDIs’ types is the further study that typically has been
performed through extensive experimental testing in pharmaceu-
tical research [5], which can help the scientific communities and
manufacturers further decrease toxicity and increase effective-
ness for these interactions [6]. However, more direct costs are
incurred during long-period of clinical trials. Besides, DDIs have
important relation with combination therapies that are hard to
explore the space of combinations via high-throughput screening
due to the exceedingly large number of unique chemical com-
binations. Collectively, these considerations highlight the bene-
fits of discovering novel computational methods for predicting
DDIs.

In the past few years, people have seen a surge in DDIs research
due to the unprecedented success of deep and graph learning. Var-
ious databases, approaches and models have been proposed in the
recent literature, urgently calling for a comprehensive survey to
focus the efforts in this flourishing new direction. Few review arti-
cles cover machine learning algorithms and recently developed
deep and graph learning models. Some surveys of databases and
other resources supporting drug discovery and DDIs extraction
have also been conducted recently [7–12]. In this survey, we first
summarize the commonly adopted databases and molecular rep-
resentations related to DDIs. Then we present an overview of com-
putational methods for DDIs prediction and focus on reviewing
deep learning and graph neural network (GNN) based methods.
Moreover, we introduce several commonly-used GNN models. Fur-
thermore, we select several representations baselines for compar-
ative experiments on two benchmark datasets, and the detailed
experimental results are analyzed. Finally, we make a conclu-
sion to discuss the potential future trends as well as promising
research directions that could be used to further improving DDIs

prediction. To summarize, the main contributions of this work are
as follows:

(i) Structured taxonomy. As shown in Figure 1, we contribute a
structured taxonomy to provide a broad overview of com-
putational methods, which categorizes existing works from
four perspectives: chemical structure based, network based,
NLP based and hybrid methods.

(ii) Current progress. We systematically delineate the current
research directions on the topic of deep and graph learning
methods for DDIs prediction as illustrated in Table 1, and
we further investigate the comparison performance of these
representative baseline models as shown in Tables 3–5.

(iii) Abundant resources. We have gathered a comprehensive
collection of resources dedicated to DDIs prediction. These
collections include open-sourced deep and graph learning
methods, available platform and toolkit, as well as an
important paper list. These resources can be accessed
our github (https://github.com/xzenglab/resources-for-
DDIs-prediction-using-DL), which will be continuously
updated.

(iv) Future directions. We discuss the limitations of existing works
and suggest several promising future directions.

DATA SOURCES
DDIs is not only known as a binary relationship but also can be
affected by numerous factors, such as chemical substructures,
targets and enzymes. The available datasets collect multiple
drug-related information including mechanism of actions, protein
structures and pharmacogenomic effects, which provide great
opportunity for scientific communities to effectively develop
novel methods to predict various drug interactions. In this section,
we provide a brief overview of several commonly used chemical
and bioinformatics databases for DDIs prediction as shown in
Table 2.
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Table 1. List of deep and graph learning models for DDI prediction

Model Year Input Representation Architecture Task Code

DeepDDI [13] 2018 SMILES Structural similarity FC layers Binary/multi-class classification Link
Decagon [14] 2018 SMILES Heterogeneous network Encoder + decoder Binary classification Link
MLRDA [15] 2019 SMILES Drug features Encoder + decoder Binary classification -
KMR [16] 2019 Drug ID Multiple drug descriptor CNN, Bi-LSTM +

attention
Binary classification -

MR-GNN [17] 2019 SMILES Molecular graph Weighted GCN + LSTM Binary/multi-class classification Link
MHCADDI [18] 2019 SMILES Molecular graph GCN + co-attention Binary/multi-label classification Link
D3I [19] 2019 Drug ID Drug features Encoder + aggregator Binary classification Link
KG-DDI [20] 2019 Drug ID Knowledge graph Conv-LSTM Binary classification Link
DDIMDL [21] 2020 Drug name Diverse drug features DNN Multi-class classification Link
GoGNN [22] 2020 SMILES Molecular/interaction

graph
GNN + attention Multi-class/multi-label

classification
Link

KGNN [23] 2020 Drug ID Knowledge graph GNN Binary classification Link
BioBERT [24] 2020 SMILES Embedding BERT Binary classification Link
SkipGNN [25] 2020 Drug ID Skip graph MPNN Binary classification Link
CASTER [26] 2020 SMILES Substructure Encoder + decoder Binary classification Link
EPGCN-DS [27] 2020 SMILES Molecular graph GCN Binary classification Link
HOGCN [28] 2021 Drug ID Interaction network High-order GCN Binary classification Link
MUFFIN [29] 2021 SMILES/Drug ID Molecular graph +

knowledge graph
MPNN + TransE Binary/multi-class/multi-label

classification
Link

SumGNN [30] 2021 SMILES/Drug ID Knowledge
graph/subgraph

GNN + attention Multi-class/multi-label
classification

Link

MIRACLE [31] 2021 SMILES Molecular graph GCN + Contrastive
learning

Binary classification Link

SSI-DDI [32] 2021 SMILES Substructure GAT + Co-attention Binary classification Link
AAEs [33] 2021 Drug ID Knowledge graph Adversarial

autoencoders
Binary classification Link

GNN-DDI [34] 2022 SMILES Molecular graph GAT Binary classification Link
MFFGNN [35] 2022 SMILES +

molecular graph
Multi-type feature GNN + BiGRU Binary classification Link

GCNMK [36] 2022 Drug ID DDI graph + drug
features

GCN + Linear
transformation

Binary classification -

DeepDrug [37] 2022 SMILES Molecular graph RGCN Binary/multi-class/multi-label
classification

Link

LR-GNN [38] 2022 Drug ID Biomedical network GCN Binary classification Link
DANN-DDI [39] 2022 Drug ID Biomedical network SDNE + attention Binary classification Link
DGAT-DDI [40] 2022 Directed graph Source/target encoding Source/target GAT Binary classification Link
GMPNN [41] 2022 SMILES Molecular graph Gated MPNN Binary classification Link
STNN-DDI [42] 2022 SMILES Substructure Encoder + decoder Binary classification Link
deepMDDI [43] 2022 Drug ID Sub-networks RGCN Encoder + decoder Multi-label classification Link
RANEDDI [44] 2022 Drug ID DDI network RotatE + network

embedding
Binary/multi-class classification Link

DeSIDE-DDI [45] 2022 Fingerprints Gene expressions DNN Multi-class classification Link
SA-DDI [46] 2022 SMILES Substructure D-MPNN Binary classification Link
MSAN [47] 2022 SMILES Substructure Transformer-like

framework
Binary classification Link

LaGAT [48] 2022 Drug ID Knowledge
graph/subgraph

Link-aware GAT Binary/multi-class classification Link

Molormer [49] 2022 2D structures Molecular graph spatial
structure

Attention + Siamese
network

Binary classification Link

MDDI-SCL [50] 2022 Drug ID Drug features Attention + Contrastive
learning

Multi-class classification Link

R2-DDI [51] 2022 SMILES Molecular graph DeeperGCN + Feature
refinement

Binary classification Link

BioDKG-DDI [52] 2022 SMILES Multiple drug features Attention + DNN Binary classification -
AMDE [53] 2022 SMILES Sequence + atomic

graph
MPAN + Transformer Binary classification Link

DDKG [54] 2022 SMILES/Drug ID Knowledge graph Encoder-decoder + GCN Binary classification Link
3DGT-DDI [55] 2022 3D structures Molecular graph +

position information
3D GNN + text attention Binary/multi-class classification Link

DSN-DDI [56] 2023 Molecular graph Substructure Dual-view encoder +
decoder

Binary classification Link

DGNN-DDI [57] 2023 SMILES Molecular graph +
substructure

Directed MPNN +
substructure attention

Multi-class classification Link

KG2ECapsule [58] 2023 Drug ID Knowledge graph GCN + Capsule Multi-label classification Link
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Table 2. The widely used databases for DDI prediction.

Database Publication year Num. of drug Num. of drug-related pairs Latest update Link

KEGG [59] 1995 11 147 324 183 DDIs V104.1, 2022-11-01 Link
DrugBank [60] 2006 1706 191 808 DDIs V5.1.9, 2022-01-03 Link
SIDER [61] 2008 1430 139 756 drug-side effect pairs V4.1, 2015-10-21 Link
TWOSIDES [62] 2012 645 4 649 441 DDIs – Link
OFFSIDES [62] 2012 1332 18 842 drug-event associations – Link
BIOSNAP [63] 2018 1332 41 520 DDIs – Link

Table 3. Performance evaluation under binary classification task

Method Year AUPRC ACC AUROC F1 Remarks

Dataset 1: DrugBanka

DeepWalk [64] 2014 0.9070 0.8349 0.9181 0.8357 Network based method
GreRep [65] 2015 0.9115 0.8443 0.9230 0.8461 Network based method
LINE [66] 2015 0.8915 0.8280 0.9092 0.8318 Network based method
SDNE [67] 2016 0.8782 0.8303 0.9029 0.8373 Network based method
GAE [68] 2016 0.7403 0.7491 0.8085 0.7889 Network based method
struc2vec [69] 2017 0.8672 0.7882 0.8735 0.7962 Network based method
KG-DDI [20] 2019 – 0.7867 0.7867 0.7843 Network based method
KGNN [23] 2020 0.9892 0.9561 0.9912 0.9566 Network based method
AAEs [33] 2021 0.7899 – 0.9480 – Network based method
DANN-DDI [39] 2022 0.9709 0.9962 0.9763 0.9692 Network based method
DGAT-DDI [40] 2022 0.943 0.886 0.951 0.884 Network based method
RANEDDI [44] 2022 0.9894 – 0.9898 0.9562 Network based method
AMDE [53] 2022 – 0.9763 0.9901 0.9760 Network based method
DeepDDI [13] 2018 0.828 – 0.844 0.772 Chemical structure based method
KMR [16] 2019 0.9568 0.9219 0.9512 0.9191 Chemical structure based method
CASTER [26] 2020 0.829 – 0.861 0.796 Chemical structure based method
SSI-DDI [32] 2021 0.9814 0.9447 0.9838s – Chemical structure based method
MFFGNN [35] 2022 0.9681 – 0.9539 0.9254 Chemical structure based method
DeepDrug [37] 2022 0.98 – – 0.94 Chemical structure based method
GMPNN [41] 2022 – 0.9530 0.9846 – Chemical structure based method
SA-DDI [46] 2022 – 0.9623 0.9880 0.9629 Chemical structure based method
MSAN [47] 2022 – 0.9700 0.9927 0.9704 Chemical structure based method
R2-DDI [51] 2022 – 0.9815 0.9970 0.9816 Chemical structure based method
3DGT-DDI [55] 2022 – – 0.970 – Chemical structure based method
DSN-DDI [56] 2023 – 0.9694 0.9947 0.9693 Chemical structure based method
MIRACLE [31] 2021 0.9234 – 0.9551 0.8360 Hybrid method
BioDKG-DDI [52] 2022 – 0.9370 0.9830 0.9390 Hybrid method
Dataset 2: TWOSIDESb

MR-GNN [17] 2019 – 0.7623 0.85 0.7788 Chemical structure based method
MHCADDI [18] 2019 – – 0.8820 – Chemical structure based method
SSI-DDI [32] 2021 – 0.7820 0.8585 0.7981 Chemical structure based method
DeepDrug [37] 2021 – – – 0.84 Chemical structure based method
GMPNN [41] 2022 – 0.8283 0.9007 0.8408 Chemical structure based method
SA-DDI [46] 2022 – 0.8745 0.9317 0.8835 Chemical structure based method
R2-DDI [51] 2022 – 0.8615 0.9149 0.8731 Chemical structure based method
DSN-DDI [56] 2023 – 0.9883 0.9990 0.9883 Chemical structure based method

aThe performance on DrugBank dataset of DeepDDI was directed from CASTER results, and that of DeepWalk, GreRep, LINE, SDNE, GAE, struc2vec and KG-DDI
were reported from KGNN results, and that of other methods were directly obtained from original papers. The division of the train and test set might be
different for each model. bThe performance on TWOSIDES dataset of MR-GNN, MHCADDI, SSI-DDI, GMPNN and SA-DDI were reported from DSN-DDI results,
and that of other methods were directly obtained from original papers. The division of the train and test set might be different for each model. Bold values
significance the greater these evaluation metrics the better the prediction.

KEGG
KEGG database is originally used to discover utilities of the
biological system and high-level functions, especially large-scale
molecular datasets generated by genome sequencing and other
high-throughput experimental technologies. As an integrated
database with 16 resources, it was broadly classified into systems,
genomic, chemical and health information, such as KEGG PATH-
WAY and KEGG DRUG. As for KEGG DRUG, it collects multiple drug
information of approved drugs and unifies them according to
their chemical structures. Specifically, each entry is identified by

the drug number and associated with KEGG original annotations
(e.g. drug metabolism), which results in 1925 approved drugs
and their 56 983 interactions spanning 11 147 drugs and 324 183
interactions, respectively.

DrugBank
DrugBank is a free-to-access and online database that collects
drugs, drug targets, their mechanisms and interactions. Version
1.0 started in 2006 and the latest version has been updated to
5.1.9 in 2022. At present, it contains 14 944 drug entries, including
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Table 4. Performance evaluation under multi-class classification task

Method Year Mean accuracy Macro precision Macro recall Macro F1 Remarks

Dataset 1: DrugBanka

DeepWalk [64] 2014 0.8000 0.8220 0.7101 0.7469 Network based method
LINE [66] 2015 0.7506 0.6870 0.5451 0.5804 Network based method
Decagon [14] 2018 0.8719 – – 0.5735 Network based method
KG-DDI [20] 2019 0.8923 0.7945 0.7667 0.7666 Network based method
KGNN [23] 2020 0.9127 0.8583 0.8170 0.8291 Network based method
SkipGNN [25] 2020 0.8583 – – 0.5966 Network based method
SumGNN [30] 2021 0.9266 – – 0.8685 Network based method
LaGAT [48] 2022 0.9604 – – 0.9289 Network based method
DeepDDI [13] 2018 0.8371 0.7275 0.6611 0.6848 Chemical structure based method
DDIMDL [21] 2020 0.8852 0.8471 0.7182 0.7585 Chemical structure based method
SSI-DDI [32] 2021 0.8965 0.8763 0.9321 0.8993 Chemical structure based method
GMPNN [41] 2022 0.9485 0.9346 0.9725 0.9495 Chemical structure based method
SA-DDI [46] 2022 0.9565 0.9472 0.9746 0.9573 Chemical structure based method
Molormer [49] 2022 0.9667 0.9419 0.9270 0.9311 Chemical structure based method
MDDI-SCL [50] 2022 0.9378 0.8804 0.8767 0.8755 Chemical structure based method
DGNN-DDI [57] 2023 0.9609 0.9472 0.9788 0.9616 Chemical structure based method
MUFFIN [29] 2021 – 0.9648 0.9495 Hybrid method method

aThe performance on DrugBank dataset of DeepWalk, LINE, DeepDDI, KG-DDI and KGNN were reported from MUFFIN results, and that of Decagon and
SkipGNN were obtained from SumGNN results, and that of GMPNN, SA-DDI and SSI-DDI were obtained from DGNN-DDI results, and that of other methods
were directly obtained from original papers. Bold values significance the greater these evaluation metrics the better the prediction.

Table 5. Performance evaluation under multi-label classification task

Method Year PR-AUC ACC ROC–AUC F1 Remarks

Dataset 1: DrugBanka

DeepWalk [64] 2014 0.4782 0.6163 0.6501 0.5861 Network based method
LINE [66] 2015 0.4923 0.6374 0.6926 0.6190 Network based method
KGNN [23] 2020 0.8587 0.7947 0.8602 0.7945 Network based method
KG2ECapsule [58] 2023 0.8858 0.8050 0.8882 0.8145 Network based method
Dataset 2: TWOSIDESb

DeepWalk [64] 2014 0.6160 – 0.8708 – Network based method
LINE [66] 2015 0.6043 – 0.8621 – Network based method
node2vec [126] 2016 0.8887 – 0.9066 – Network based method
Decagon [14] 2018 0.9060 – 0.9172 – Network based method
KG-DDI [20] 2019 0.6527 – 0.8906 – Network based method
KGNN [23] 2020 0.6584 – 0.8948 – Network based method
SkipGNN [25] 2020 0.9090 – 0.9204 – Network based method
SumGNN [30] 2021 0.9335 – 0.9486 – Network based method
DeepDDI [13] 2018 0.5032 – 0.8301 – Chemical structure based method
MUFFIN [29] 2021 0.7033 – 0.9160 - Hybrid method

aThe performance on DrugBank dataset of DeepWalk, LINE and KGNN were reported from KG2ECapsule results. bThe performance on TWOSIDES dataset of
DeepWalk, LINE, node2vec, Decagon, KG-DDI, KGNN and SkipGNN were reported from SumGNN results, and that of DeepDDI was obtained from MUFFIN
results, and that of other methods were directly obtained from original papers. Bold values significance the greater these evaluation metrics the better the
prediction.

2729 approved small molecule drugs, 1564 approved biologics
(e.g. proteins and allergenics) and over 6713 experimental drugs
including discovery-phase. Generally, given two drugs with their
SMILES sequences, the final goal is to predict their interaction
type (i.e. binary, multi-class and multi-label classification). Drug-
Bank V5.1.4 is widely used in comparison experiment, and it
contains 1706 drugs and 191 808 drug pairs with 86 DDI types.

SIDER
Side effect resource collects multiple information from marketed
drugs and their side effects to provide a more comprehensive view
of actions of drugs and their adverse reactions. It can predict the
potential side effects of drug candidates according to their bind-
ing fingerprints, chemical structures and other chemical proper-
ties. Meanwhile, it combines side effect information with other
resources in chemical biology, which will greatly benefit pharma-
cology and medical research. Its current version 4.1 includes 1430
drugs, 5868 side effects and 139 756 drug-side effect pairs.

TWOSIDES
The TWOSIDES databases collect polypharmacy side effects that
are related to individual one in the drug pairs or higher-order drug
combinations. Overall, it contains 868 221 associations between
59 220 pairs of drugs and 1301 adverse events. Additionally, it
contains 3 782 910 significant associations for which the drug
pair has a higher side-effect association score, evaluated by the
proportional reporting ratio (PRR) [70], than those of the individual
drugs alone. Specifically, it contains 645 drugs and side effects
caused by 63 473 combinations of different drugs. Generally, given
two drugs with their SMILES sequences, the final goal is to predict
all side effects (i.e. multi-label classification).

OFFSIDES
The OFFSIDES database collects 438 801 off-label side effects
between 1332 drugs and 10 097 adverse events. Off-label means
no record on the US Food and Drug Administration (FDA)’s official
drug label while on-label means the opposite. The drug label lists
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Figure 2. A diagram illustrating six commonly-used molecular representation approaches, including: (A) one-dimensional (1D) sequence-based
representation; (B) 2D graph-based representation; (C) 3D representation; (D) DDI network; (E) heterogeneous graph and (F) knowledge graph.

in average 69 on-label adverse events. And it listed an average
of 329 high-confidence off-label adverse events for each drug.
Moreover, it recovers 38.8% (i.e. 18 842 drug-event associations)
of SIDER associations from the adverse event reports.

BIOSNAP
The BIOSNAP dataset collects various types of interactions
between FDA-approved drugs by constructing a biological
network. Nodes represent drugs and edges represent drug
interactions. This dataset contains 1322 approved drugs with 41
520 labeled DDIs that are extracted from drug labels and scientific
publications.

MOLECULAR REPRESENTATION
The representation of drug molecule is an crucial part in
drug-related tasks, including DDIs prediction. For example,
Tranylcypromine is an inhibitor of the enzyme monoamine
oxidase [71], functioning nonselectively and irreversibly, and thus
it is also employed clinically as an antidepressant and anxiolytic
agent in the treatment of mood and anxiety disorders. Take
its SMILES (Simplified Molecular Input Line Entry System) [72]
format C1C(C1N)C2=CC=CC=C2 as an example, Tranylcypromine
is represented by six commonly used molecular representation
as shown in Figure 2.

Sequences
As the most frequently used molecule descriptor, SMILES is a
string of characters as shown in Figure 2A, where each atom
is encoded by a respective ASCII symbol, and chemical bonds,
branching as well as stereochemistry are represented by spe-
cific symbols in SMILES strings. The SMILES sequence is capable
of converting the chemical structure into a spanning tree by

utilizing a longitudinal-first traversal tree algorithm to generate
a sequence of characters. A variety of deep learning models,
such as recurrent neural networks, are able to employ their
internal state (memory) to process variable length sequences
of inputs [73–75], using SMILES sequences as input to extract
the chemical context via various natural language processing
techniques, including Mol2Vec [76] and FCS [77]. Sequence-based
representations tend to be compact, memory-efficient and easily
searchable.

2D graph
A more direct way to representing drug molecules is through
2D graph-based representation (i.e. molecular graph) as shown
in Figure 2B. In particular, we denote 2D graph as G2D = (X, E),
X ∈ R

N×d represents the atom attribute matrix, where N denotes
the number of nodes and d denotes the dimensionality of
node feature, and E are characterized by the type of chemical
bonds between the atoms, including single, double, triple and
aromatic bond. Specifically, Figure 3 shows an example of the
molecular graph representation of Tranylcypromine. First, the
SMILES sequence is transformed into its 2D structures using
RDKit tool. Predefined atomic features are then assigned to each
node based on its atom number. In a molecular graph, each node
contains a 78-dimension initial feature vector to encode five types
of atomic features, including atomic symbol, adjacent atoms,
adjacent hydrogens, implicit value and aromaticity. Finally, we
obtain the molecular graph representation of Tranylcypromine that
consists of atom number (i.e. total number of atoms), atomic
features and edge features (i.e. edge list). This representation
allows us to extract the structural information from a molecular
graph. We then typically apply a transformation function T2D

to the topological graph. Given a 2D graph G2D or molecular
graph obtained from its SMILES sequence via RDKit [78], its
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Figure 3. An example of the molecular graph representation of Tranylcypromine by using RDKit.

representation H2D can be computed from a 2D GNN model:

H2D = 2DGNN(T2D(X, E)). (1)

Usually, message passing neural networks (MPNN) [79] known as
one of the classic 2D GNN models are designed to accomplish
the encoding of graph-based methods. Since 2D graph is usually
stored in the form of adjacency matrices. The utilization of 2D
GNN not only allows for faster and accurate combination of
properties between two adjacent atoms or chemical bonds, but
it also allows the weights to be optimized in the message passing
process. With comparison to sequence-based approaches, graph-
based representations are easy to extract the structural informa-
tion via graph convolutional operations, where bond weights can
be updated and optimized in message-passing networks.

3D graph
Many methods use sequence- and graph-based representations of
molecules as the inputs, such as SMILES sequences and molec-
ular graphs. Although these methods can effectively preserve
the structural information of drug molecules, they can not cap-
ture well the inter-binding relationships between ligands and
receptors, especially biologically meaningful in 3D relationships,
because the 3D coordinates of all atoms in the ground-state
molecule are critical to various applications, including molecular
property prediction [80] and molecular conformer ensembles [81].
Here, 3D graph as shown in Figure 2C represents the spatial
arrangements of each atom in the 3D space, containing a list of
atoms with atom types and atomic coordinates. Generally, each
molecule with n atoms is expressed as an undirected graph G =
(V ,E), where V = {vi}n

i=1 is the set of vertices symbolizing atoms
and E = {eij|(i, j) ∈ |V| × |V|} is the set of edges representing inter-
atomic bonds. Each node vi ∈ V indicates the atomic attributes
(e.g. the element type), and each edge eij ∈ E describes the
connection between vi and vj, and is labeled with its chemical
type. Additionally, we also assign virtual types to the unconnected
edges. For 3D geometry graph, each atom in V is embedded in the
3D space with a coordinate vector c ∈ R

3, and the full set of posi-
tions (i.e. the conformation where atoms are represented as their
Cartesian coordinates) can be represented as C = [c1, c2, ..., cn],
where ci ∈ R

3. Then we generally apply a transformation function
T3D on the geometry graph. Given a geometry graph G3D = (X, C),
its representation H3D can be obtained via a 3D GNN model:

H3D = 3DGNN(T3D(X, C)). (2)

DDI network
DDIs can be associated with biological, chemical and phenotypic
information about drugs. The drug–drug interaction network (DDI
network) is proposed to learn the potential associations between

drug molecules. Generally, the DDIs prediction problem is for-
mulated as a missing link prediction task by constructing a DDI
network with drugs as nodes and known interactions as edges.
Specifically, drugs should be represented as feature vectors via
interaction profile from known interactions to build prediction
models. As shown in Figure 2D, let A, B, C,..., H be a set of given
drugs, the drug interaction profile, which is a binary vector indi-
cating the presence or absence of interaction between drugs (e.g.
A←→E, A←→G), can be represented as an interaction network.

Heterogeneous graph
Heterogeneous graph (HetG) contains a wealth of information
with structural relations (i.e. edges) among nodes of various types,
as well as unstructured content associated with each node [82].
For example, HetG can be expressed as to involve many other
types of biological entity relationships in the process of predicting
DDIs. Considering these different associations can enhance the
prediction performance. In general, the HetG associated with DDIs
is expressed as a graph G = (V, E, OV, RE), where V and E denote
the sets of nodes and links, respectively. OV and RE represent the
set of object types and that of relation types, respectively. Fur-
thermore, each node is associated with heterogeneous contents
(e.g. attributes). Specifically, the HetG denotes relations between
different pairs, including drugs and targets, drugs and side-effects,
drugs and diseases. For instance, Figure 2E illustrates the biologi-
cal heterogeneous graph centered around drug Fulvestrant, where
edges with distinct colors denote different relations, and arrows
indicate the direction of information flow.

Knowledge graph
Recently, knowledge graphs (KGs), which are a form of struc-
tured human knowledge, have been gaining increasing attention
from both academic and various aspects of the drug discovery
domain [83]. For example, KGs can be utilized to better integrate
multiple entity types and diverse association relations between
biological entities. This approach allows for the extraction of high-
order semantic features to improve DDIs prediction. KGs can
be represented by a structured representation of facts, which
comprised of entities, relationships and semantic descriptions.
Generally, a knowledge graph is denoted by G = (V ,E ,F), where
E , R and F are sets of entities, relations and facts, respectively. A
fact is denoted as a triple (h, r, t) ∈ F . As shown in Figure 2(F),
entities (i.e. nodes) with different color and alphabet represent
real-world biological objects (e.g. drug, target and side-effect), and
relationships (i.e. edges) depict the connection between entities,
where semantic descriptions of entities and their relationships
encompass types and properties with a clearly defined meaning,
including Drug Disease, Drug Target Gene and Drug Brite. As a
topical concrete application, KGs have been utilized in helping to
combat the COVID-19 pandemic [84, 85]. Additionally, there are
few existing knowledge graph covering various aspects of the drug
discovery process, including Hetionet [86], DRKG [87], BioKG [88],
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8 | Lin et al.

PharmKG [89], OpenBioLink [90] and Clinical Knowledge Graph
[91]. Note that a comprehensive review is beyond the scope of this
work and readers who are interested are directed to a dedicated
review [92].

MODELS
The DDIs prediction is to develop a computational model that
receives two drugs with an interaction type as inputs and gen-
erates an output prediction indicating whether there exists an
interaction between them. As introduced in previous section (i.e.
Molecular Representation), drug molecules generally use RDKit to
convert its SMILES sequence into molecular graphs with nodes
as atoms and edges as chemical bonds. Specifically, a graph for
a given SMILES is denoted by G = (V, E), where V is the set of
N nodes represented by a d-dimensional vector, and E is the set
of edges represented as an adjacency matrix A. In a molecule
graph, xi (resp., xj) ∈ V is the i (resp., j)th atom and eij ∈ E is the
chemical bond between the xi and xj. Owing to the non-Euclidean
and translation invariance, GNNs have been proposed to replace
traditional convolution networks in order to extract drug feature
representations from chemical molecular graph. In the case of
GNN, the process of learning drug representation is essentially the
message passing between each node and its neighboring nodes.
Thus we further systematically review four types of GNN models
for encoding molecular representations into continuous vectors,
as shown in Figure 3, including graph convolutional network,
message passing neural network, graph attention network and
graph auto-encoder.

Graph convolutional networks
Graph convolutional networks (GCNs) are a class of neural
networks specifically designed for graph-structured datasets.
Advances in this direction are often categorized as spectral-
and spatial-based approaches. Spectral-based approaches learn
compact representations of graph elements, their attributes and
supervised labels as shown in Figure 4A. Following the original
paper of GCN [93], the input of multi-layer GCN is the node
feature matrix X ∈ R

N×d and the adjacency matrix A ∈ R
N×N that

represents the connection of nodes. The layer-wise propagation
algorithm can be obtained as below:

Hl+1 = σ(D̃−1/2ÃD̃−1/2H(l)W(l)), (3)

where Ã = A + IN is the adjacency matrix of an undirected graph
G with added self-connections, and IN represents the identity
matrix, D̃ is diagonal matrix with D̃ii = ∑

jÃij and W(l) is a layer-
specific trainable weight matrix. Here, σ(·) denotes an activation
function (e.g. ReLU(·) = max(0, ·)). And H(l) (resp., H(l+1)) ∈ R

N×D

represents the matrix of activations in the l (resp., l + 1)th layer,
respectively. We suppose that H(0) = X. The output Z ∈ R

N×F (F is
the number of output features for every node) can be obtained as
below:

Z = σ(D̃−1/2ÃD̃−1/2X�), (4)

where � ∈ R
F×d represents the matrix of filter parameters.

In contrast, spatial-based approaches [94] define convolutions
directly on the graph by propagating and aggregating node rep-
resentations from neighboring nodes in the vertex domain, as
opposed to spectral-based GCN, which depends on the specific
eigenfunctions of the Laplacian matrix. Following KGNN [23],

the proposed method learns latent representations of drugs and
their neighborhood entities embedding between drug pairs from
the constructed KG. Figure 4A shows an example of a two-layer
KGNN of the given G node (green) in a KG. Note that besides the
immediate neighbors (e.g. B, E and P), it also extends KGNN to two-
layer (H = 2) to extract both high-order structures and semantic
relations. Generally, given a node v at the kth depth and its graph
convolution is computed by:

hk
N (v) ← AGGREGATEk

(
{hk−1

u , ∀u ∈ N (v)}
)

, (5)

hk
v ← σ

(
Wk · CONCAT(hk−1

v , hk
N (u))

)
, (6)

where each node v ∈ V aggregates the representation vectors of
all its immediate neighboring nodes u ∈ N (v) in the current depth
via some learnable AGGREGATE operation. Then it combines the
node’s current representation hk−1

v with its aggregated neighbor-
hood representation hk−1

N (v), and finally passes the combined vector
to a fully-connected layer with a nonlinear activation function
σ(·), followed by a normalization step. And the output of final
representation at depth K are denoted by zv = hK

v .
The aggregator functions include mean, LSTM and pooling aggre-

gators. The mean aggregator can be simplified as follows:

hk
v ← σ

(
W · MEAN({hk−1

v } ∪ {hk−1
u , ∀u ∈ N (v)})

)
, (7)

AGGREGATEpooling
k = max

(
{σ(Wpoolh

k
ui

+ b), ∀ui ∈ N (v)}
)

. (8)

Message passing neural network
Message passing neural network (MPNN) is a typical type of GNNs
that maps an undirected graph G to a graph-level vector hG using
Message passing and readout. As depicted in Figure 4B, message
passing is first used to update node-level features (i.e. V0) by
aggregating messages from their neighbor nodes (i.e. V1, V2 and
V3). Following that, the readout process is designed to generate
a graph-level feature vector by aggregating all the node-level
features from a molecule graph. Finally, a label is predicted for
the graph based on the graph-level feature vector. Concretely, the
Message passing consists of T steps. On each step t, node-level
hidden feature h(t)

i and messages m(t)
i associated with each node vi

are updated using message function Mt and node update function
Ut. Their definitions are as follows.

mt+1
i =

∑
vj∈N(vi)

Mt(h
(t)
i , h(t)

j , eij), (9)

ht+1
i = Ut(h

(t)
i , mt+1

i ), (10)

where N(vi) represents the set of neighbors of vi in the graph G,
and h(0)

i is set to the initial atom features xi. The readout then uses
a readout function R to obtain a graph-level feature vector based
on the node-level features at the final step as follows.

hg = R({h(T)

i |vi ∈ G}). (11)

The message function Mt, node update function Ut, and readout
function R are all learned differentiable functions.
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Deep and graph learning on drug–drug interactions | 9

Figure 4. A diagram illustrating the theory framework of widely-used GNN models in the DDIs prediction, including: (A) GCN; (B) MPNN;
(C) GAT; (D) GAE.

Graph attention network
Traditionally, GCN assigns the same weight to each neighbor node,
and not every neighbor node has the same importance. Thus,
graph attention network (GAT) is proposed to introduce a graph

convolution model based on self-attention mechanism, which
incorporates a graph attention layer in its architecture as shown
in Figure 4C. According to the original paper of GAT [95], a set of
node features x ∈ RF is used as input of GAT layer, and a linear
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10 | Lin et al.

transformation is applied to each node based on a weight matrix
W ∈ RF×F

′
, where F and F

′
are the dimensions of the input and

output nodes, respectively. Moreover, attention coefficients between
a node and its one-hop neighbors are adopted to obtain the output
node as follows:

eij = α(W
−→
h i, W

−→
h j), (12)

where eij represents the importance of node j to node i. To ensure
that the coefficients are comparable across different nodes, they
are normalized across all choices of j using the softmax function
as follows:

αij = softmaxj(eij), (13)

the non-linearity function σ is finally applied to compute the

output node
−→
h

′
i by:

−→
h

′
i = σ

⎛
⎝∑

j∈Ni

aijW
−→
h j

⎞
⎠ , (14)

while a basic operation of attention is multi-head. Simply, it is to
repeat the previous operation multiple times, but the parameters
that need to be trained are different each time, so that we can
extract more information. The process of multi-head can be com-
puted by:

−→
h

′
i =

K∏
k=1

σ

⎛
⎝∑

j∈Ni

ak
ijW

k−→h j

⎞
⎠ , (15)

where K is the number of heads.

Graph auto-encoder
Graph auto-encoder (GAE) has been widely used in the field of
unsupervised learning on graph-structure data. Obtaining the
suitable embeddings to represent nodes in the graph is not trivial,
GAE adopt the encoder-decoder structure to realize the goal and
to apply to the downstream tasks, such as link prediction. If we
view drugs as nodes and DDI as links in a graph, DDIs prediction
can be considered as a task to complete a DDI adjacency matrix.
As shown in Figure 4D, the encoder represents drugs into scalars
and decoders use these scalars to rebuild the whole graph by pre-
dicting the existence of a link between a pair of nodes/drugs. The
encoder can be viewed as representation methods and decoder
can be viewed as classifiers. Generally, GAE employs GCN as an
encoder to obtain latent representations or embedding of nodes.
This process can be expressed as follows:

Z = GCN(X, A), (16)

where Z represents the latent representations of all nodes, X and
A represent the feature matrix of the node and adjacency matrix,
respectively. Here X and A as input are then fed into GCN function,
and we have:

GCN(X, A) = ÃReLU(ÃXW0)W1, (17)

where Ã = D−1/2AD−1/2, W0 and W1 represent parameters to
be learned. In short, GCN is equivalent to a function that takes
node features and adjacency matrix as input and outputs node
embedding. After that, GAE uses the inner-product as a decoder to

reconstruct the original graph, the computation of reconstructed
adjacency matrix Â can be formulated by:

Â = σ(ZZT), (18)

in order for the reconstructed adjacency matrix to be as close to
the original adjacency matrix as possible. Because the adjacency
matrix determines the structure of the graph.

PREDICTION TASKS
Due to the increasing amount of data and advanced algorithms,
DL has led to breakthroughs in various domains [96–99], including
in the application of DDIs and drug-related prediction tasks [100–
104]. Figure 5 shows an illustrative pipeline of several DL methods.

In the beginning, this line of work develop effective representa-
tion method (see Section 3) to capture high-level hidden embed-
dings from various public datasets (see Section 2). Different from
traditional machine learning based methods that heavily rely on
the handcraft feature and domain knowledge, these approaches
can learn more abstract information via deep architectures (see
Section 4) without manually selecting and tuning features [105,
106], and the learned latent embeddings are finally used to predict
on downstream tasks. There are many different types of classi-
fication tasks that may be encountered in DDIs prediction and
specialized approaches to modeling that may be used for each,
including binary, multi-class and multi-label classification.

Classification based predictive modeling involves assigning a
class label to input sample. Binary classification refers to predict-
ing whether interactions exist without determining their specific
type, and multi-class classification involves predicting the specific
type of DDIs between drug pairs. Following [29] in the model train-
ing, we generally optimized the model parameters by minimizing
the cross-entropy loss in the binary and multi-label classification
tasks, as described below:

L1 = −[yijlogŷij + (1 − yij)log(1 − ŷij)], (19)

where ŷij denotes the interaction label for drug pair (di, dj) in binary
classification task, and in multi-label task, each element yij is the
one-hot vector with 86 elements (e.g. 86 DDI types in DrugBank
dataset).

Multi-label classification involves predicting one or more DDIs
type for each drug pair, the loss is defined as follows:

L2 = −
Nc∑

c=1

yclogŷc, (20)

where Nc is the number of multi-class DDI types, yc ∈ 0, 1 describes
whether current type c is the same as the true label of sample pair,
and ŷc indicates the probability that the observed sample (di, dj)
belongs to type c.

PROGRESS AND TAXONOMY OF
COMPUTATIONAL APPROACHES
Computational approaches mainly design effective algorithms to
discover patterns by using public datasets retrieved from clinical
texts [107], electronic health records [108, 109], and social media
[110]. These methods can be roughly divided into chemical struc-
ture, network based, NLP based and hybrid methods. A Taxonomy
of the different methods is shown in Figure 1. Furthermore, we
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Deep and graph learning on drug–drug interactions | 11

Figure 5. The pipeline of deep and graph learning methods for DDIs prediction. In general, drugs and their relevant information such as ID, name, and
SMILES sequences are obtained from accessible data sources like DrugBank and TWOSIDES dataset. These drugs can then be optionally encoded into
feature vectors using various molecular representation methods, such as molecular graph representation. The resulting representations, such as similarity
matrices or 2D graphs, are subsequently fed into suitable models, such as GNNs, to generate interaction results or predicted scores based on the specific
prediction tasks.

summarize and formulate 46 state-of-the-art deep and graph
learning models in the recent years using a unified symbolic
system in Table 1.

Chemical structure based methods
The vast majority of chemical structure based methods rely
on similarity based, molecular graph and substructure based
approaches, respectively.

Similarity based
Theses methods are based on the assumption that similar drugs
may perform similar DDIs. They first extract some similarities
from molecular structures [111], and various properties (e.g.
phenotypic [112], functionality [113] and side effects [114])
as features for model training. Then they adopt classifiers
to predict potential DDIs. For example, DeepDDI [13], which
consists of structural similarity profile generation pipeline and
deep neural network (DNN), is proposed to use the structural
information to classify 86 DDIs types. MLRDA [15] is proposed to
effectively exploit multiple drug features by leveraging a novel
unsupervised disentangling loss CuXCov. Similarly, a knowledge-
oriented DNN model is developed by KMR [16] to discover the
interaction information among multiple features. Furthermore,
D3I [19] is presented to conduct cardinality- and order-invariant
high-order DDIs prediction. DDIMDL [21] is constructed by the
similarity assumption, and it built a multi-modal DL framework
with multiple drug features to predict DDI events. A novel DL-
based framework named DeSIDE-DDI [45] is developed to show
more concern in interpretation on underlying genes, and it
leveraged drug-induced gene expression signatures to engineer
dynamic drug features by using a gating mechanism. Recently,
a multi-type DDI prediction model named MDDI-SCL [50] is
presented by supervised contrastive learning and three-level loss
functions.

Molecular graph
Recent advances in artificial intelligence and technologies provide
a set of potentially promising GNNs-based approaches for drug-
related prediction tasks, including molecular property [115] and
molecular interactions [116]. Naturally, drug molecules can be
encoded by graph with atoms as nodes and chemical bonds
as edges. Graph convolution neural networks (GCNs) have been
proposed to extract node-level or graph-level features in various
constructed graph [117]. For example, MR-GNN [17] is proposed
to use multiple graph convolution layers to extract node features
from different neighboring nodes in a structured entity graph.
Moreover, MHCADDI [18] leverages a co-attentional mechanism
to combine the type of side-effect and the molecular structures
to obtain drug-level representation. EPGCN-DS [27] adopts a GCN
based framework for type-specific DDI identification from molec-
ular structures. GNN-DDI [34] learns k-hops drug representations
its molecular graph via a five-layer GAT encoder. MFFGNN [35]
combines the topological structure in molecular graphs with the
interaction relationship between drugs and the local chemical
context in SMILES sequences. Furthermore, Molormer [49] takes
the 2D structures of drugs as input and encodes the molecular
graph with spatial information based on a lightweight atten-
tion mechanism. DeepDrug [37] captures the intrinsic structural
information of a compound by utilizing relational GCN module.
Recently, R2-DDI [51] further learns the drug representation by
designing a relation-aware feature refinement framework.

Substructure based
Different from the aforementioned methods (i.e. MR-GNN)
that takes the whole chemical structures into account, more
recent efforts have attempted to leverage GNN for powerful
feature extraction of drug substructures. A chemical substructure
representation framework named CASTER [26] encodes the
functional substructures of drugs. SSI-DDI [32] operates directly
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12 | Lin et al.

on the raw molecular graph representations to identify pairwise
interactions between their corresponding substructures. A gated
MPNN (GMPNN) [41] learns chemical substructures with different
sizes and shapes from the molecular graph representations.
A substructure-aware tensor model, referred as to STNN-
DDI [42], learns a 3D tensor to characterize a substructure-
substructure interaction space. SA-DDI [46] develops a directed
MPNN with attention mechanism to extract the size- and shape-
adaptive substructures. A Transformer-like framework (MSAN)
[47] extracts substructures via attention mechanism to associate
atoms with learnable pattern vectors. DSN-DDI [56] employs
local and global representation learning modules iteratively,
and learns drug substructures from intra-view and inter-view
simultaneously. DGNN-DDI [57] exploits the molecular structure
and interaction information between chemical substructure via a
co-attention mechanism. Furthermore, incorporating geometric
information into GNNs to benefit some molecular prediction tasks
has recently gained research attention [118], and 3D structures
of drug molecules also contribute to DDIs tasks, where 3DGT-
DDI [55] adopts 3D structural information of molecular graph
and position information to improve the model performance,
which can deeply explore the effect of drug substructure on DDI
relationship.

Network-based methods
In general, network-based approaches infer the novel DDIs via
label propagation [119, 120], multiple sources [121] or newly cal-
culated features [122]. With the increasing availability of large
biomedical network and the rapid development of deep learning,
some studies attempt to incorporate with various advanced tech-
niques, including graph embedding, link prediction and knowl-
edge graph.

Graph embedding
Various graph embedding algorithms have been proposed to
acquire potentially effective network-based features, including
matrix factorization-based methods (e.g. GraRep [65], HOPE [123],
FGRMF [124], BRSNMF [125]) that utilize the adjacency matrix as
the input to learn latent embeddings from matrix factorization
and random walk-based methods (e.g. DeepWalk [64], node2vec
[126] and struc2vec [69]) that first generate sequences of nodes
through random walks and then feed the sequences into the
model to learn node representations, and neural network-based
methods (e.g. Line [66], SDNE [67] and GAE [68]) that adopt
different neural architectures and use various graph information
as input. More detailed introduction of graph embedding on
biomedical networks refer to [127]. Recently, GCNMK [36] obtains
the embeddings of drugs by constructing two DDI graphs as the
graph kernels.

Link prediction
Meanwhile, some GNN approaches cast the prediction as a link
prediction problem on DDI graph or network. Previously, Decagon
[14] is presented to develop a graph auto-encoder approach for
multirelational link prediction on a multi-modal graph that con-
sists of multiple interactions (e.g. drug–protein target interac-
tions). In addition to aggregate information from direct interac-
tions in biological network, a skip similarity approach named
SkipGNN [25] that receives neural messages from two-hop neigh-
bors and direct neighbors in the interaction network. Analo-
gously, DANN-DDI [39] builds multiple drug feature networks and
learns drug representations from these networks by using the
graph embedding method. HOGCN [28] is introduced to adopt a

higher-order GCN to gather different features from the higher-
order neighborhood for biomedical interaction prediction. A GNN
based on graph structure and initial features, named LR-GNN
[38], constructs the link representation by designing a propa-
gation algorithm to capture the node embedding. Furthermore,
DGAT-DDI [40] is the first approach for predicting asymmetric
interactions among drugs, and it designs a directed GAT to learn
the embeddings of the source and the target role. deepMDDI
[43] learns the topological features of DDI network by combining
RGCN encoder with similarity regularization of multiple drug
features. Recently, a relation-aware network embedding model,
abbreviated RANEDDI [44], extracts the multirelational informa-
tion and relation-aware network structure information together.

Knowledge graph
Existing GNN approaches for DDIs typically depend on one source
of information, while using information from multiple sources
could help improve predictions [54, 128]. Particularly, knowledge
graph (KG) has greatly stimulated research on various domains,
including relation inference and recommendation [129]. In our
knowledge, KG-DDI [20] is the first specialized for DDIs task that
embeds the nodes in the constructed KG using various embed-
ding approaches. Another KG embedding framework (AAEs) [33]
uses adversarial autoencoders based on Wasserstein distances
and Gumbel-Softmax relaxation. Furthermore, KGNN [23] suc-
cessfully adopts GCNs with neighborhood sampling to explicitly
extract the neighborhood relations. More recently, subgraph struc-
tures have been found to contain rich information for many graph
learning tasks. SumGNN [30] further uses KG to extract tractable
pathway by designing a graph summarization module on sub-
graphs. And a link-aware graph attention method called LaGAT
[48] generates multiple attention pathways for drug entities based
on various drug pair links in KG. DDKG [54] further learns the drug
embeddings from their attributes in the KG, and then simulta-
neously considers both neighboring node embeddings and triple
facts by attention mechanism. KG2ECapsule [58] integrates cap-
sule network to explicitly model the multi-relational DDI data
based on biomedical KG.

NLP-based methods
As training DNNs from scratch often requires a large number
of labeled data, which are expensive to acquire in real-world
scenarios, inspired by the recent success in NLP, pre-trained mod-
els have been proposed to learn universal molecular representa-
tions from massive unlabeled molecules and fine-tuned on down-
stream tasks with task-specific labeled data. BioBERT [24] is first
introduced to investigate how the pre-trained language model
BERT [130] are pre-trained using large-scale unlabeled molecu-
lar databases and then fine-tuned for adaption to biomedical
text mining. Subsequently tremendous efforts have been devoted
to pre-trained language model for biomedical prediction tasks,
including property prediction [118], molecular generation [131],
peptide and HLA (pHLA) binding prediction [132]. More systematic
introduction of molecular pre-trained models refer to [133].

Hybrid methods
Despite the remarkable progress gained by previous methods,
improving the prediction accuracy is still crucial. Hybrid methods
is proposed to combine with two or multiple types of existing
methods in an efficient pattern. For example, GoGNN [22] extracts
features from both structured entity graphs and DDI network in
a hierarchical way via dual-attention mechanism. MUFFIN [29]
jointly learns the drug representation from molecular structure
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and biomedical KG. BioDKG-DDI [52] adaptively integrates three
different types of drug features, molecular structure, drug global
information and drug functional similarity representation to pre-
dict novel DDIs. Recently, contrastive learning has been success-
fully applied in the application of bioinformatics, including gene
regulatory interactions [134], and drug–target interaction [135].
A novel unsupervised contrastive learning method named MIR-
ACLE [31] is introduced, and it treats a DDI network as a multi-
view graph where each node in the interaction graph represents
a drug molecular graph instance. AMDE [53] jointly encodes 2D
graph feature and 1D SMILES sequence by using message passing
attention network and Transformer, respectively.

As illustrated in Table 1 in chronological order, we present dif-
ferent deep and graph learning methods. Specifically, the columns
of Model, Input, Representation, Architecture, Task and Code represent
the name, data format as the input of model, encoding form of
input data, detailed architecture or technology adopted by the
proposed model, functions can be implemented by the model, and
available link of source code, respectively. The methods listed in
Table 1 are also appeared in the taxonomy in Figure 1.

DISCUSSION
To comprehensively investigate the predictive performance of
deep and graph learning models, we compared the experimental
results of surveyed methods under binary, multi-class and multi-
label classification tasks, respectively. In the following sections,
we first introduce the benchmark datasets, then present the
detailed of evaluation metrics under different prediction tasks,
and finally analyze the comparison results.

Benchmark dataset
We chose DrugBank and TWOSIDES datasets as benchmark
datasets owing to their wide use across many studies. For the
binary classification task, it always assigned a label ‘1’ or ‘0’
to indicate whether an interaction occurs between each pair
of drugs in DrugBank and TWOSIDES datasets. For the multi-
class classification task, the DrugBank dataset contains 191 808
DDI triplets with 1706 drugs and 86 types of pharmacological
relationships between drugs [56]. Following the same criterion
in Decagon [14], the interaction types with <500 triplets were
removed, resulting in 4 576 287 DDI triplets with 963 interaction
types in the TWOSIDES dataset. For the multi-label classification
task, the TWOSIDES dataset contains 645 drugs (nodes) and 46
221 drug–drug pairs (edges) with 200 different drug side effect
types as labels. For each edge, it may be associated with multiple
labels. Following Decagon [14], it kept 200 commonly occurring DDI
types ranging from Top-600 to Top-800 to ensure every DDI type
has at least 900 drug combinations. As reported in KG2ECapsule
[58], it extracted the drug relation from the description of drug-
interaction in DrugBank dataset. The aim was to categorize the
types of DDI relations into two groups based on this extracted
information. Following the same data split scheme in GMPNN
[41], the benchmark dataset was split into train, validation and
test sets using a ratio of 6:2:2. Negative samples were randomly
generated at a ratio of 1:1, meaning that they consisted of drug
pairs that had not appeared in the positive samples.

Evaluation metrics
Generally, we denote the true label and predicted values of DDIs
by y and ŷ, respectively. For the binary classification prediction,
experiment results are reported with the following four metrics
across the 5-folds. Area under the precision-recall curve (AUPRC) is

the area under the plot of the precision rate against recall rate
at various thresholds, accuracy (ACC) is defined as the number of
correct predictions divided by the number of total predictions,
area under the receiver operating characteristic (AUROC) is the area
under the plot of the true positive rate against the false positive
rate at various thresholds, and F1 score is the harmonic mean of
precision and recall. The corresponding mathematical calculation
is represented as follows.

Precision = TP
TP + FP

, (21)

Recall = TPR = TP
TP + FN

, (22)

FPR = FPR
FP + TN

(23)

ACC = TP + TN
TN + TP + FN + FP

, (24)

F1 − score = 2TP
2TP + FN + FP

, (25)

where TP, FP, TN and FN denote the value of true positive, false
positive, true negative and false negative, respectively. The AUPRC
curve is drawn based on the values of FPR and TPR, where the
x-axis is TPR and the y-axis is FPR. This is in contrast to AUROC
curves, where the x-axis is FPR and the y-axis is TPR.

For the multi-class classification prediction, we follow Deep-
DDI [13] and consider the following metrics, including mean accu-
racy, macro precision, macro recall and macro F1. Macro metrics
are used to reflect the average performance across different
interaction types. For example, macro precision is defined as the
average of the precision values of different interaction types. Their
definitions are as follows:

Mean accuracy = 1
l

l∑
i=1

TPi + TNi

TPi + FNi + FPi + TNi
, (26)

Macro recall = 1
l

l∑
i=1

TPi

TPi + FNi
, (27)

Macro precision = 1
l

l∑
i=1

TPi

TPi + FPi
, (28)

Macro F1 = 2(Macro precision)(Macro recall)
(Macro precison) + (Macro recall)

, (29)

where l is the number of DDI interaction types. In addition, to con-
sidering both precision and recall, we selected the threshold value,
which achieves the maximum value of F1 in each interaction type,
as the type-specific threshold.

For multi-label classification prediction, we follow SumGNN
[30] and a group of metrics is used to measure the prediction,
including ROC-AUC, PR-AUC, Accuracy (ACC) and F1-score. ROC–AUC
is the average area under the receiver operating characteristic
curve as ROC − AUC = ∑n

k=1 TPk�FPk, where k represents kth true-
positive and false-positive operating point (TPk, FPk). PR-AUC is the
average area under precision-recall curve PR−AUC = ∑

k=1 n�Reck,
where k is kth precision/recall oprating point (Preck, Reck). For each
side effect type, the performance is individually calculated and
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use the average performance over all side effects as the final
result.

Results
In this section, we compared state-of-the-art deep and graph
learning models under binary, multi-class and multi-label clas-
sification prediction task, respectively. Table 3 shows the com-
parison results of 30 models under binary classification task on
two benchmark datasets. The performance of DDIs prediction
achieved by these models were all measured in terms of AUPR,
ACC, AUROC and AUC under 5-fold cross-validation. The greater
these evaluation metrics the better the prediction. Although the
division of the training and test sets could be specific to models,
such an evaluation is still statistically significant. Specifically,
from the observation we found that RANEDDI (AUPRC = 0.9894)
and KGNN (AUPRC = 0.9892), which belong to network based
methods, achieve the best and second-best AUPRC performance
compared with chemical structure based and hybrid methods on
DrugBank datasets. This is because these methods (i.e. RANEDDI
and KGNN) can explore multi-relational information contained
in the DDI network or knowledge graph, while the graph embed-
ding approaches like DeepWalk, GraRep, DeepDDI or substructure
based method (e.g. CASTER) only learn from similar drug fea-
tures or chemical structural information. Note that DANN-DDI
obtains the best ACC result of 0.9962 over all models, and R2-DDI
achieves the best performance in terms of AUROC and F1 score.
Meanwhile, experimental results on TWOSIDES dataset show that
DSN-DDI, recently published chemical structure based model,
achieves better performance than other baseline models on all
evaluation metrics. Particularly, the ACC, AUROC and F1 result
of DSN-DDI is 0.9883, 0.9990 and 0.9883, respectively. Interest-
ingly, the comparison indicates that network based methods (e.g.
DANN-DDI and RANE-DDI) show similar performance to chemical
structure based methods (e.g. R2-DDI), while hybrid methods show
stable performance on DrugBank datasets under binary classifi-
cation task.

In the multi-class classification task, we chose the DrugBank
dataset as benchmark dataset owing to its wide use across many
studies and collected 10 deep and graph learning models into
the comparison list, which is shown in Table 6. From this table,
we found that chemical structure based methods significantly
outperform network based and hybrid methods on most metrics.
More specifically, Molormer achieved the best score of 0.9667
on mean accuracy, DGNN-DDI achieved the macro recall and
macro F1 score of 0.9788 and 0.9616 compared to other methods,
respectively. In addition, we can see that chemical structure based
methods achieved stable performances across all metrics. For
example, the macro recall of GMPNN and SA-DDI are 0.9725 and
0.9746, respectively. These results demonstrate that they achieved
similar performance with DGNN-DDI, indicating that they belong
to substructure based methods. This is a very encouraging result.
The reason could be that (i) DDIs are fundamentally caused by
chemical substructure interactions, especially in multi-class clas-
sification tasks that focus on atom similarity and key substruc-
tures; (ii) more effective strategies are proposed by these methods
to specifically detect substructures with irregular size and shape,
which can further enhance the representation capability of the
model. In addition, the multi-class classification task is more
difficult than the binary classification task.

In the multi-label classification task, we chose DrugBank and
TWOSIDES datasets as benchmark datasets and compared 11
deep and graph learning models as shown in Table 5. From this
table, we observed that KG2ECapsule and SumGNN consistently

outperformed other methods in all evaluation metrics. In
particular, KG2ECapsule improves over the strongest baselines
with respect to PR-AUC by 2.71%, ACC by 1.03%, ROC–AUC by 2.8%
and F1 by 2% on DrugBank dataset, respectively. The reason for
this is that KG2ECapsule is capable of modeling the triplets and
integrating the relations of edges into embedding. Meanwhile, on
TWOSIDES dataset, SumGNN achieved at least 2.45% on PR-AUC,
2.82% on ROC-AUC higher performance than other methods. This
justifies that SumGNN is more effective to harness the external
knowledge via subgraphs. More interestingly, with comparison
to other KG based methods (e.g. KGNN and KG-DDI), we found
that KG2ECapsule and SumGNN can consistently outperform
them on both datasets, which indicates that simply adopting KG
embeddings as well as neighborhood sampling are insufficient to
fully harness the KG information for DDIs prediction. Moreover,
network based methods achieved better performances in the
multi-label classification task.

CHALLENGE AND OPPORTUNITIES
Deep and graph learning techniques have distinct advantages
over traditional machine learning methods in tackling the com-
putational drug discovery. Although many studies focus on the
prediction of DDIs and high prediction performance have been
proposed, there still remains several challenges and promising
future directions as follows.

Dataset imbalance
Most deep and graph learning models in drug discovery pipeline
need large amounts of data for model training and validation.
The lack of enough known DDIs and experimentally validated
negative samples are major obstacles for deep and graph learn-
ing models to have positive influence on DDIs prediction, espe-
cially in the application of real-world scenarios. For example, the
imbalanced data for different relations in certain case are very
sparse with respect to side-effect type, which will lead to poor
generalizability for model performance. Meanwhile, current DDI
benchmark datasets only include a small number of labeled (resp.,
positive) samples, in which the quality of data is not guaranteed
and the dataset might be imbalanced for the lack of negative sam-
ples of drug–drug pair. As for unlabeled samples, most methods
regard them as negative samples and sample the same number of
negative drug pairs from non-interacting DDIs for model training.
These methods overlook the fact that unlabeled samples may
contain potential positive data, which would adversely influence
the model performances. How to choose high-quality data and
how to address insufficient training data remain challenges.

Multimodal representation
The potential of computational drug discovery lies in the variety
of multiple data modalities that provide complementary infor-
mation [136]. Deep and graph learning models using multimodal
data will have considerable advantages over unimodal counter-
parts since the multimodal data offer complementary perspec-
tives. Existing studies usually focus on the single modal data. For
example, graph- or substructure-based method pay more atten-
tion to the molecular data containing structural information,
while network-based approaches only consider the relationship
between drug and relation in the drug level, neglecting the atom
level of the pair interaction between drugs. These methods do not
fully use other data modalities, such as drug–target interactions,
drug–disease associations, protein pathways and evidences from
electronic medical records, such information may be also highly
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Table 6. List of widely used platform and toolkit for biomedical application

Name Year Release Updates Application examples Website

DeepChem 2017 V2.7.1
√

Molecular property prediction
Drug–target binding affinity prediction
Physical properties prediction
Protein structure analysis and descriptors extraction
Number counting of cells in a microscopy image

Link

DeepPurpose 2020 V0.1.5
√

Drug target interaction prediction
Drug property prediction
Drug–drug interactions prediction
Protein-protein interaction prediction
Protein function prediction
Antiviral drugs repurposing for SARS-CoV2 3CLPro
Repurposing using customized training data

Link

PaddleHelix 2020 V1.1.0
√

Large-scale pre-training models of compounds and proteins
Molecular property prediction
Drug–target affinity prediction
Molecular generation
RNA design
Drug–drug synergy prediction

Link

DGL-LifeSci 2021 V0.3.1
√

Property prediction
Generative models
Protein-ligand binding affinity prediction
Reaction prediction

Link

TorchDrug 2021 V0.2.0
√

Property prediction
Pretrained molecular representations
Molecule generation
Retrosynthesis
Knowledge graph reasoning

Link

ADMETlab 2021 V2.0
√

Absorption, Distribution, Metabolism,
Excretion and Toxicity (ADMET) prediction

Link

ChemicalX 2022 V0.1.0 × Drug–drug interactions prediction
Drug pair scoring task

Link

related to DDIs and their induced adverse reactions. Thus, how
to effectively utilize diverse and heterogeneous biological data is
worth of exploring.

High-order drug associations
Identifying the potential associations between drugs and related
entities (e.g. diseases and microbe) is pivotal to understanding
the underlying disease mechanisms and facilitating personalized
treatments. In the past few years, most methods have been
proposed to concentrate on predicting pair-wise associations,
such as drug–drug, drug–protein, drug–microbe and drug–disease
interactions, these methods deal with them separately and fail to
provide in-depth insights into high-order association patterns. For
example, many diseases are closely related to various microbes,
which interact with a variety of drugs in complex way, and
the causal links between drugs, gut microbes and diseases
require a workflow to uncover their intricate interactions. Such a
workflow of triple-wise drug-microbe-disease associations can be
regarded as high-order drug associations prediction. Meanwhile,
high-order associations prediction is a fundamental task in
multiple domains, including knowledge graphs, recommendation
systems and bioinformatics. There is an urgent need to seek
ways to develop effective methods for predicting high-order drug
associations to speed up the process of drug discovery.

Model interpretability
Deep and graph learning techniques offer great potential in many
fields, but they are often essentially ‘black boxes’ that are unable

to provide confidence and actionability for the predicted results.
As an essential process in drug discovery, DDIs prediction aims to
identify and quantify the risks related to the usage of drugs for a
better understanding of adverse drug effects and the pathogenic
mechanisms. The latent embedding obtained by current deep and
graph learning models is limited to capturing implicit correlations
of the data, which is hard to provide reasonable explanations for
the predicted interactions. Thus, the idea model should under-
stand how the algorithms are constructed, what each layer learns,
and what the embeddings represent. Meanwhile, interpretability
and evidence support are essential for prediction methods in
biomedical applications. It is also worthwhile to further focus on
interpretability and to improve the reliability of predicted results.

Generative AI models
Recent advances in generative AI models, such as ChatGPT
(https://openai.com/blog/chatgpt), have shown remarkable
success on a variety of domains. From Transformer to BERT to
ChatGPT, the continuous advancement of generative AI models
has opened up a new era of AI. These generative AI models are
trained on large-scale datasets, providing a reasonable parameter
initialization for a wide range of downstream applications,
including natural language processing [137], computer vision
[138] and graph learning [139]. Moreover, generative AI models
have been deployed in various stages of the drug development
pipeline [10], ranging from AI-assisted target selection and
validation to molecular design and chemical synthesis. In the
near future, it is anticipated that generative AI models would
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be able to generate realistic data that can be used to identify
potential DDIs. These data can then be utilized to improve
existing models or create new models that are more effective
at addressing the challenges mentioned above. By combining the
power of generative AI models and advanced deep and graph
learning techniques, it is conceivable to develop better models for
predicting DDIs.

Platform and toolkit
To further speed up the drug discovery process and enable more
people with different scientific backgrounds to get involved in
research, many researcher and communities have been commit-
ted to the development of platform and toolkit based on machine
learning and deep learning methods. Table 6 illustrates the widely
used platform and toolkit for biomedical application. Specifically,
DeepChem aims to provide a high quality open-source toolchain
that makes deep learning in drug discovery, materials science,
quantum chemistry, and biology more accessible. DGL-LifeSci is
a DGL-based package for various life science applications with
graph neural networks and provides various functions. DeepPur-
pose is a deep learning-based molecular modeling and predic-
tion toolkit involving many downstream tasks (e.g. compound
property prediction and protein function prediction). TorchDrug
is a machine learning platform designed for drug discovery that
covers various techniques from GNNs, geometric deep learning,
KGs, deep generative models, and reinforcement learning. Pad-
dleHelix is a bio-computing tool that takes advantage of the
machine learning approaches, especially DNNs, for facilitating
the development of the following areas, including drug discovery,
vaccine design and precision medicine. ADMETlab 2.0 [140] is an
improved version of the widely used ADMETlab, which is used to
systematical evaluation of ADMET properties. While fewer work
are specialized for developing the platform or toolkit on DDIs
prediction. To our knowledge, one such work named ChemicalX is
a deep learning library for drug–drug interaction, polypharmacy
side effect and synergy prediction, and also includes state-of-
the-art DNN architectures that solve the drug pair scoring task,
with implemented methods covering traditional SMILES sequence
based techniques and MPNN based models. However, these plat-
forms and toolkits, which are mainly developed by individuals,
do not have any maintenance or update schedule in place. As a
result, they will become increasingly obsolete as the underlying
programming framework and deep learning models continue to
evolve.

CONCLUSIONS AND OUTLOOK
In this work, we provided a comprehensive review of deep and
graph learning methods for drug–drug interactions prediction. We
categorized existing approaches into traditional machine learn-
ing, deep learning and GNN-based methods. We introduced data
sources and summarized the widely used molecular representa-
tion as well as some classic GNN model on DDIs prediction. To
the end, we discussed the current challenges of existing deep
and graph learning methods and suggested potential research
directions for further development in DDIs prediction. In con-
clusion, the rapidly growth of deep and graph learning tech-
niques has brought new opportunities for biomedical applica-
tions, including drug-related prediction tasks. However, the bot-
tlenecks of these technologies, such as imbalance dataset, the
issues of multimodal representation and high-order drug associ-
ations prediction, and the lack of or limited interpretability of the

model impedes their application and further affects their predic-
tion performance. Therefore, there is an urgent need to further
develop and evaluate intelligent deep and graph learning models
in realistic drug discovery scenarios in order to reach its full
potential.

Key Points

• Structured taxonomy. As shown in Figure 1, we contribute
a structured taxonomy to provide a broad overview
of computational methods, which categorizes existing
works from four perspectives: chemical structure based,
network based, NLP based and hybrid methods.

• Current progress. We systematically delineate the current
research directions on the topic of deep and graph learn-
ing methods for DDIs prediction as illustrated in Table 1,
and we further investigate the comparison performance
of these representative baseline models as shown in
Tables 3–5.

• Abundant resources. We have gathered a comprehensive
collection of resources dedicated to DDIs prediction.
These collections include open-sourced deep and graph
learning methods, available platform and toolkit, as
well as an important paper list. These resources can
be accessed our github (https://github.com/xzenglab/
resources-for-DDIs-prediction-using-DL), which will be
continuously updated.

• Future directions. We discuss the limitations of existing
works and suggest several promising future directions.
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