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Abstract—Accurately predicting drug-target interactions (DTI)
is a critical step in drug discovery. Existing methods of DTI
prediction primarily employ Simplified Molecular-Input Line-
Entry System (SMILES) sequences or molecular graphs to learn
drug representations. However, the features learned by such
single-view approach is prone to incomplete. While some multi-
view methods that consider the views of both SMILES sequences
and molecular graphs have been developed, these methods often
fall in short in capturing potential interactions between views.
In this work, we propose a novel dual contrastive learning
framework CSCL-DTI for DTI prediction. First, we design a
contrastive-enhanced cross-view representation learning (CVRL)
to learn representations for drugs. In this module, Transformer-
based and graph convolutional network (GCN)-based encoders
are separately adopted to learn view-specific representations,
followed by contrastive learning to enrich the representations
by accounting for the potential interplay between local chem-
ical context and topological structure. Second, we combine
Transformer with self-supervised contrastive learning (SSCL) to
learn representations for targets by modelling protein amino
acids sequences. The scheme allows to effectively preserve the
intrinsic characteristics of the sequences. Finally, we introduce a
bilinear attention network to obtain an integrated representation
by adaptively incorporating drug and target representations.
Benchmarking experiments on three datasets demonstrated that
CSCL-DTI1 outperforms seven state-of-the-art methods.

Index Terms—Drug discovery, Drug-target interactions, Graph
neural network, Transformer, Contrastive learning.

I. INTRODUCTION

Predicting drug-target interactions (DTI) is a crucial step in
drug discovery and repurposing [1], [2]. In order to develop
a new drug, it is essential for discovering which proteins
the drug targets. Traditional methods rely on high-throughout
screening experiments to examine a drug’s affinity toward its
targets. However, these methods face significant challenges
because of the large-scale search space of potential drug and
protein candidates, resulting in high cost and long period.
Consequently, the development of computational methods for
predicting drug-target interactions is urgently needed.

1https://github.com/xiiiz/CSCL-DTI

Over the past decade, some computational methods have
been proposed for DTI prediction [3]. We can divide these
methods into two main groups, namely molecular docking
simulation (MDS)-based methods and machine learning (ML)-
based methods. MDS-based methods focus on simulating the
drug binding mechanism to target proteins [4]. This is ac-
complished by predicting receptor-ligand complex structures.
However, these methods face challenges when dealing with
numerous proteins that lack 3D structures, as these structures
are essential for the simulation process. Besides, docking
simulations tend to be time-consuming and thus, inefficient
for large-scale applications.

To address these challenges, machine learning-based meth-
ods have been proposed and widely applied for DTI prediction
[5]. For instance, a deep learning method called DeepDTA
was proposed by Öztürk et al. [6] for predicting the binding
affinities of drug-target interactions using sequencing infor-
mation of both drugs and targets. Subsequently, Lee et al. [7]
present a convolutional neural network (CNN) [8] based model
called DeepConv-DTI to predict DTI using protein sequences
and drug fingerprints. Inspired by the successful application of
Transformer [9] model in Natural Language Processing (NLP),
Chen et al. [10] released TransformerCPI for DTI prediction,
which applies the Transformer architecture to represent drug
Simplified Molecular-Input Line-Entry System (SMILES) [11]
strings and protein amino acid sequences. To take into account
the sub-structural nature of DTI, Huang et al. [12] proposed
another Transformer-based method named MolTrans for DTI
prediction. MolTrans improves the prediction performance
by enhancing the extraction of semantic relations among
subsequence structures of drugs and targets. However, these
models primarily focus on sequence information of drugs and
targets, overlooking molecular structural topology, which is
essential for enhancing prediction accuracy.

To alleviate this limitation, recently, graph representation
methods for molecular graph-based DTI prediction have been
developed [13]. Nguyen et al. [14] introduced GraphDTA, a
deep learning model that represents drugs SMILES as graphs.



Jahromi et al. [15] presented AttentionsiteDTI, a graph repre-
sentation learning method for DTI prediction. These methods
take into account topological structures, leading to improved
performance. However, a common limitation is that most
depend solely on single-view information, either sequence or
molecular graph, without incorporating insights from both of
these crucial perspectives.

For this purpose, multi-view methods have been developed
for DTI prediction that simultaneously considers chemical
context and topological structures [16]. For example, DeepGS
[17], a deep learning model proposed for drug-target bind-
ing affinity prediction from our lab, attempted to combine
amino acids sequence with molecular graph to improve the
prediction. Similarly, Cheng et al. [18] introduced IIFDTI,
a deep learning-based method for DTI prediction. It incor-
porates independent features of drug molecular graphs and
target sequences. Despite these advancements, existing multi-
view methods face certain limitations. First, although they
utilize multi-view information, these methods often treat such
information independently, overlooking potential interrelations
between cross-views. Second, few of these methods simultane-
ously consider multi-view information of the same node type
(e.g., drugs or targets).

To overcome these limitations, we propose a novel con-
trastive learning framework for predicting DTI, named CSCL-
DTI. CSCL-DTI is designed to comprehensively utilize the
sequence and topological structures of drugs, as well as their
interrelations. With SMILES sequence of a given drug, we
apply the Frequent Common Subsequence (FCS) algorithm
[12] and the RDKit package [19] to derive its subsequence
and molecular graph. Then we introduce a dual-encoder
framework, a Transformer encoder for the subsequence and
a Graph Convolutional Network (GCN) [20] encoder for the
molecular graph. This framework enables us to obtain distinct
yet complementary sequence and graph representation. To
capture inherent correlation between these two views, cross-
view contrastive learning strategy is combined with the duel-
encoder framework, leading to refined drug representation.
Finally, a bilinear attention aggregation module is utilized to
adaptively incorporate view-specific representation to obtain
final drug representation. For target representation, we employ
a self-supervised contrastive learning scheme. This scheme can
effectively capitalizes on the intrinsic properties of the amino
acid sequence. Comprehensive experiments on three datasets
demonstrated that our CSCL-DTI consistently outperformed
state-of-the-art methods.

Overall, our main contributions are summarized as follows.
• We proposed a novel contrastive learning framework for

DTI prediction called CSCL-DTI, which fully exploits
sequence and topological structures, along with their
interrelation, to enhance the prediction.

• To capture potential interplay between different views of
drugs and intrinsic characteristics in the target sequence,
we introduced cross-view and self-supervised contrastive
learning strategies to learn representations for drugs and
targets, respectively, resulting in refined representations.

• We incorporated a bilinear attention mechanism to effec-
tively learn drug representations by adaptively integrating
features from different views.

• Comprehensive experiments demonstrated the proposed
CSCL-DTI model outperformed seven state-of-the-art
methods. Ablation study validated the contribution of
each component to the overall performance of the model.

II. METHODOLOGY

In this section, we introduce the CSCL-DTI model for
DTI prediction. Fig. 1 illustrates the entire architecture
of CSCL-DTI, which is comprised of three main compo-
nents: a contrastive-enhanced cross-view representation learn-
ing (CVRL) module for drug representation, a self-supervised
contrastive learning (SSCL) module for target representation,
and a classifier. First, we design a contrastive-enhanced cross-
view representation learning module to learn drug representa-
tions, specifically leveraging drug relevant information from
dual views, i.e., SMILES sequence and molecular graph.
Second, we use a SSCL module to effectively learn target
representation by fully exploiting the intrinsic properties of
amino acid sequence. Third, concatenating the learnt drug
and target representations, they are given into the classifier
to predict DTI. Next, we elaborate on each component of the
model in detail.

A. Contrastive-enhanced cross-view representation learning
for drug representation

For a given drug, data from different perspectives offers
unique and complementary features, which are crucial for
the improvement of drug representation learning. Inspired
by the great success of contrastive learning in the computer
vision domains such as SimCLR [21] and MoCo [22], we
design a CVRL module for drug representation learning. This
module integrates SMILES sequence with molecular graph
for the representation learning. We utilize both Transformer
and GCN encoders to acquire sequence and graph represen-
tations from these respective views. To effectively capture
relationships between these two views, we introduce a cross-
view contrastive learning strategy to enhance representation
learning. Eventually, the sequence and graph representations
are adaptively aggregated using a bilinear attention method,
deriving the final drug representation.

1) Sequence representation: To acquire sequence represen-
tations from SMILES sequence data, we utilize a Transformer-
based encoder. Prior to encoding, we preprocess the SMILES
sequences using the FCS algorithm [12], renowned for its abil-
ity to capture essential biomedical semantics. Specifically, FCS
decomposes SMILES sequence into atomic symbols or shorter
sub-sequences, and then maps the decomposed sub-sequences
via a preset dictionary into corresponding embedding vectors.
For a given drug i, FCS yields a content embedding Ed

conti and
a positional embedding Ed

posi . The initial embedding Ed
i of

drug i is formulated by summing these content and positional
embeddings, effectively integrating both the structural and
sequential context of the drug representation.
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Fig. 1. CSCL-DTI workflow for drug-target interaction prediction.

Ed
i = Ed

conti + Ed
posi . (1)

The initial embedding Ed ∈ RNd×d1 , Nd and d1 denote
the number of drugs and the dimension of initial embedding
respectively. However, this representation lacks the preserva-
tion of chemical relationships or contextual information among
these sub-structures. To address this, we utilize a Transformer
model to map the initial embedding into a latent space.
The Transformer model has demonstrated powerful ability
in learning contextual information [9]. By taking the initial
embedding Ed

i as its input, the Transformer model can be
formulated as follows.

(Q,K, V ) = Ed
i ∗ (WQ,WK ,WV ), (2)

Attention(Q,K, V ) = softmax
(
QK⊤
√
d2

)
V, (3)

where Q ∈ RNd×d2 , K ∈ RNd×d2 , and V ∈ RNd×d2 represent
the query, key, and value vectors respectively. d2 denotes
the dimension of feature vectors. ∗ represents the matrix
dot product operation. WQ ∈ Rd1×d2 , WK ∈ Rd1×d2 , and
WV ∈ Rd1×d2 are trainable projection weights initialized by
a neural network. With initial embeddings as inputs, the Trans-
former model outputs sequence representation Hs ∈ RNd×d2

for drugs. The Transformer model enables the modeling of

contextual dependencies among the sub-structures, thereby
enriching the drug representation.

2) Graph representation: Each SMILES sequence is trans-
formed into a molecular graph using RDKit [19] tool. As-
suming that the molecular graph is denoted as G(ν, ε), where
ν is the set of atoms in the molecular graph, and ε is the
set of chemical bonds connecting these atoms. We denote
A ∈ RNa×Na as the adjacent matrix of this graph, where
the entity Aij is equal to 1 if there is a bond between atoms
i and j, 0 otherwise. Na is the number of atoms. The initial
features of atoms are defined by physicochemical properties
and are denoted as X ∈ RNa×d3 with d3 representing the
dimension of features (The details of atom features can be
found in the Appendix I1). The rationale behind GCN lies in
learning node representation by aggregating information from
neighbor nodes. Formally, the propagation mechanism of GCN
can be defined as follows.

Z(l+1) = σ(ÃZ(l)W (l)), (4)

where Ã = D− 1
2AD− 1

2 denotes the normalized symmetrical
adjacent matrix and D is a diagonal matrix with diagonal
elements being Dii =

∑Na

j=1 Aij . Z(l) represents the rep-
resentation at the l-th layer, and we set Z0 to the initial
atom features X . σ is a non-linear activation function such
as ReLU . W (l) ∈ RNa×d2 is a trainable parameter matrix
for the convolution transformation of the current layer. d2
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denotes the dimension of representation. It should be noted
that the dimension of graph representation is set to the same as
the sequence representation for benefiting downstream cross-
view contrastive learning. We set Z = Z(L) as the final
representation of the molecular graph of drug i and L is set
as 2 in our experiment.

After obtaining the representation of molecular graph, the
graph representation Hg ∈ RNd×d2 is obtained through an
averaging pooling function. Specifically, it can be formulated
as follows.

Hg = − 1

Na

Na∑
i=1

Zi (5)

3) Cross-view contrastive learning for representation re-
finement: Motivated by the intuition that the sequence and
graph representations of the same drug are intrinsically more
similar to each other than those of different drugs, we further
incorporate a novel cross-view contrastive learning scheme to
refine drug representation. Unlike traditional contrastive learn-
ing typically relying on data augmentation [23], this scheme
is augmentation-free and focuses on aligning representations
of the same drug while distinguishing representations between
different drugs.

In our model, we employ mini-batches for model training.
For the contrastive learning, the definition of positive and
negative samples is required. Departing from previous works,
we propose a new positive selection strategy. Specifically, for
a given drug i, we treat its sequence representation hs

i and
graph representations hg

i as positive sample. In contrast, the
sequence and graph representations hs

j and hg
j of any other

drug j (j ∈ N−i) within the same batch are considered as
negative samples.

The objective function of the cross-view contrastive learning
loss for drugs is defined as follows.

Ld
CL = Ls

CL + Lg
CL, (6)

Ls
CL = −

1

2

Nd∑
i=1

log
exp

(
sim(hs

i , h
g
i )/τ

)
∑n

j=0

(
exp

(
sim(hs

i , h
g
j )/τ

)
+ exp

(
sim(hs

i , h
s
j)/τ

)) ,

(7)

Lg
CL = −

1

2

Nd∑
i=1

log
exp

(
sim(hg

i , h
s
i )/τ

)
∑n

j=0

(
exp

(
sim(hg

i , h
s
j)/τ

)
+ exp

(
sim(hg

i , h
g
j )/τ

)) ,

(8)

where j ̸= i and n is batch size. τ denotes temperature
parameter and sim(u, v) denotes cosine similarity.

4) Bilinear attention for representation aggregation: Fol-
lowing previous study [24], we utilize a Bilinear Attention
Network (BAN) to effectively integrate the sequence and graph
representations Hs and Hg , taking into account the intrinsic
relationship between the SMILES sequence and molecule
graph. The BAN is comprised of two main layers: a bilinear
correlation map layer and a bilinear pooling layer. The corre-
lation map layer is specifically designed to capture pairwise

attention weights, while the pooling layer is applied over the
correlation map to extract a unified representation.

I =
(
(1 · qT ) ◦ σ((Hs)

TU)
)
· σ(V THg), (9)

where q ∈ Rd4 is a learnable weight vector. U ∈ RNd×d4

and V ∈ RNd×d4 are learnable weight matrices for the drug
sequence and graph representations, respectively. q ∈ Rd4 is
a learnable weight vector, and 1 ∈ Rd2 is a fixed vector of
all-ones. ◦ represents the Hadamard product (element-wise).
· represents matrix multiplication operation. The elements in
I indicate the correlation relationships between the sequence
and graph representations.

Over the correlation map I , we add a bilinear pooling layer
to generate the joint representation fd ∈ Rd4 . In particular, the
following formula is used to get the k-th element of fd ∈ Rd4 .

fk
d = σ

(
(Hs)

TU
)T
k
· I · σ

(
(Hg)

TV
)
k
, (10)

where U and V are learned weight matrices shared with
the previous correlation map layer to reduce the amount of
parameters and alleviate overfitting. We additionally use a sum
pooling on the joint representation vector to reduce dimension
and produce a compact feature map.

Fd = SumPool(fd, s), (11)

where SumPool(u, v) is a non-overlapping, one-dimensional
sum pooling process with a stride of s. Fd ∈ RN×d5 is the
joint representation of drugs with d5 denoting the dimension
of representation.

B. Self-supervised contrastive learning for target representa-
tion

1) Target representation: To learn target representation, we
employ a Transformer-based encoder, augmented with SSCL.
In a process analogous to that used for drugs, we preprocess
the amino acid sequences of targets using the FCS algorithm
before encoding. The FCS algorithm decomposes amino acid
sequences into subsequence structures, generating a content
embedding Et

conti and a positional embedding Et
posi for each

target i. The initial embedding Et
i ∈ RNt×d1 (Nt is the

number of targets) of the target i is then derived by summing
these content and positional embedding.

Et
i = Et

conti + Et
posi . (12)

As previously mentioned, the initial embedding primarily
captures information from independent subsequences but is
insufficient in preserving the chemical relationships between
them. To address this limitation, we employ the Transformer
model, which is defined in Section II-A1, to map the initial
embedding Et into a latent space, deriving target representa-
tion Ht ∈ RNt×d2 .

To capture intrinsic characteristics in the amino acid se-
quences, we further introduce SSCL mechanism to refine
target representation. Specifically, we implement data augmen-
tation on the decomposed subsequence structures by randomly
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masking subwords with a given ratio r (by default, set to 0.1),
resulting in two augmented views p and q for each target. For
a given target i, its two augmented views form positive pair
while both of them form negative pairs with the augmented
views from other targets in the same batch. The purpose of
the contrastive learning is to pull intra-view representations
together while pushing inter-view representations away. The
following formula represents the goal function of contrastive
learning for targets.

Lt
CL = Lp

CL + Lq
CL, (13)

Lp
CL = −

1

2

Nt∑
i=1

log
exp

(
sim(hp

i , h
q
i )/τ

)
∑n

j=0

(
exp

(
sim(hp

i , h
q
j )/τ

)
+ exp

(
sim(hp

i , h
p
j )/τ

)) ,

(14)

Lq
CL = −

1

2

Nt∑
i=1

log
exp

(
sim(hq

i , h
p
i )/τ

)
∑n

j=0

(
exp

(
sim(hq

i , h
p
j )/τ

)
+ exp

(
sim(hq

i , h
q
j )/τ

)) ,

(15)

where i, j ∈ (1, n) and j ̸= i, τ denotes the temperature
parameter, n is the batch size, and sim(u, v) denotes cosine
similarity.

2) Attentive representation aggregation: To acquire the fi-
nal target representation, the Attentional Feature Fusion (AFF)
mechanism is designed to combine view-specific representa-
tions. This mechanism adopts a weighted averaging strategy
that assigns weights to different representation vectors based
on their importance. We first perform initial integration on the
view-specific representations, and then evaluate the importance
of each view using the sigmoid activation function, resulting
in a learned weight vector in the range of 0 to 1. For two
feature maps Hp and Hq , AFF can be represented as follows.

Ft = M(Hp ⊕Hq)⊙Hp + (1−M(Hp ⊕Hq))⊙Hq,
(16)

where Ft ∈ RNt×d5 is the fused feature, the initial feature
integration is denoted by ⊕. To initiate integration, we opt
for an element-wise summation as the primary step. The
symbol ⊙ represents the element-wise product operation. M
is the weight matrix calculated by a Sigmoid function, where
M ∈ (0, 1). Note that the fusion weights M(Hp ⊕ Hq) are
made up of real numbers ranging from 0 to 1. Similarly,
1 − M(Hp ⊕ Hq) are also real numbers between 0 and 1,
enabling the network to conduct soft selection or weighted
averaging between Hp and Hq .

C. Drug-Target Interaction Prediction

The DTI prediction task is approached in this study as a
binary classification problem. Utilizing the acquired represen-
tations, the objective is to predict whether a given drug-target
pair is interactive. With the representations of drugs and targets
Fd and Ft, the classification problem is formulated as follows.

X̂ = δ(Wout(Fd;Ft) + bout), (17)

where δ denotes non-linear activation function (i.e., Sigmoid).
Wout and bout are a learnable weight matrix and a learned
bias vector respectively, and X̂ is predicted label. The cross-
entropy loss function in the classifier is defined as follows.

LCLS = −
1

N

N∑
i=1

(xi · log (x̂i) + (1− xi) · log (1− x̂i)) +
λ

2
∥θ∥22,

(18)

where xi and x̂i denote known and predicted labels respec-
tively. N is the number of training samples. θ denotes the set
of model parameters, and λ represents the coefficient for L2

regularization. The model is jointly trained by the classification
loss and contrastive loss.

Ltotal = α · LCLS + β · Ld
CL + γ · Lt

CL, (19)

where α, β, and γ are hyper-parameters controlling the influ-
ences of different losses on model training.

III. RESULTS AND DISCUSSION

This section begins with an introduction to the experimental
setups including datasets and baseline methods. Next, we
compare our proposed CSCL-DTI model with a variety of
baselines. Additionally, an ablation study is conducted to
demonstrate the performance of the model. Finally, we test
several important parameters.

A. Dataset

To evaluate the performance of our proposed CSCL-DTI,
We adopt three widely-used benchmark datasets, including
GPCR [10], Human [25], and DrugBank [18] datasets. The
details of these three datasets are summarized in Table I. The
detailed dataset partition on three datasets are all arranged in
earlier research [18].

Table. I. The detailed dataset division of GPCR, Human, and
DrugBank.

Datasets Drugs Targets Interactions Positive Negative
GPCR 5,359 356 15,343 7,989 7,354
Human 1,052 852 6,738 3,369 3,369

DrugBank 2,615 2,932 17,248 7,261 9,987

B. Baseline methods

To demonstrate the efficacy of our model, we compare
CSCL-DTI with seven state-of-the-art methods.

• Vina [26] adopts the AutoDock Vina tool for molecular
docking, selecting the top 1 binding affinity based on
its scoring function, and the affinity threshold is set
according to a 1:1 ratio of positive and negative samples
to convert affinity into the probability of drug-target
interaction.

• DeepDTA [6] adopts two separate CNN modules to
predict the binding affinity between a drug-target pair
by extracting features from SMILES and amino acid
sequences, respectively.
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• DeepConv-DTI [7] utilizes the drug molecular finger-
prints and protein amino acid sequences as input. It also
employs CNN to capture local residual patterns.

• MolTrans [12] employs an augmented Transformer to
extract the contextual features from both drug SMILES
sequences and amino acid sequences of protein.

• GraphDTA [14] adopts GCN, Graph Attention Networks
(GAT) [27], and Graph Isomorphism Networks (GIN)
[28] to extract molecular graph features of drugs, while
utilizing CNNs to extract features of amino acid se-
quences for predicting the binding affinity.

• TransformerCPI [10] extracts the useful features from
drug SMILES and protein amino acid sequences by
employing an attention-based Transformer for predicting
compound-protein interaction.

• IIFDTI [18] fuses the interactive and independent fea-
tures between drug-target pairs to predict DTI. On one
hand, for drug-target pairs, it extracts interactive features
from substructures using a bidirectional encoder-decoder
extractor. On the other hand, it separately models the
independent features of drugs and proteins by employing
GAT and CNN, respectively.

C. Comparation to other methods

Table II shows the comparison results on GPCR, Human,
and DrugBank datasets, respectively. Experimental results of
some baseline methods are obtained from the previous work
[18]. The metrics with the best results are bolded, while
the second-best results are underlined. It is observed that
CSCL-DTI consistently achieves better performance compared
to baseline methods on three datasets. More specifically,
for GPCR dataset, CSCL-DTI outperforms the second-best
method by 1.5% and 2%, respectively, in terms of AUC and
AUPR. For small public dataset (i.e., Human), CSCL-DTI is
slightly better than the second best method, while it achieves
at least 1.3% on AUC, 1.2% on AUPR, and 1.4% on Recall
higher performance than other methods, respectively. On the
DrugBank dataset, the AUC, AUPR, and Recall of CSCL-DTI
are about 1.1%, 3%, and 1% higher than those of the second
best method (i.e., IIFDTI), and over 2.4%, 3.8%, and 2.9%
than those of the other methods, respectively.

The exceptional performance of CSCL-DTI can be at-
tributed to several reasons as follows. Firstly, compared to
traditional molecular docking and simulation methods (e.g.,
Vina), which utilize computational approaches to simulate and
to predict the binding between drugs and proteins, machine
learning methods achieve better performance because they can
automatically discover more effective features through feature
engineering. Secondly, single-view methods (e.g., DeepDTA,
GraphDTA and TransformerCPI), which solely leverages drug
SMILES sequence or molecule graph for DTI prediction,
the multi-view methods, CSCL-DTI and IIFDTI, generally
exhibit better performance across all three datasets. This is
because multi-view methods (i.e., CSCL-DTI and IIFDTI) can
explore both sequence and graph features, while sequence-
based methods do not consider the topological features of drug

Table. II. The results on all the dataset: AUC, AUPR, recall
of the baselines and CSCL-DTI.

Datasets Methods AUC AUPR Recall

GPCR

Vina 0.519±0.003 0.635±0.005 0.532±0.008
DeepDTA 0.776±0.006 0.762±0.015 0.712±0.015
DeepConv-DTI 0.752±0.011 0.685±0.010 0.713±0.021
MolTrans 0.807±0.004 0.788±0.009 0.762±0.014
GraphDTA 0.840±0.004 0.836±0.006 0.790±0.006
TransformerCPI 0.842±0.007 0.837±0.010 0.796±0.015
IIFDTI 0.845±0.008 0.842±0.007 0.783±0.017
CSCL-DTI 0.860±0.008 0.862±0.009 0.799±0.018

Human

Vina 0.569±0.006 0.703±0.004 0.570±0.007
DeepDTA 0.972±0.001 0.973±0.002 0.935±0.017
DeepConv-DTI 0.967±0.002 0.964±0.004 0.907±0.023
MolTrans 0.974±0.002 0.976±0.003 0.933±0.022
GraphDTA 0.972±0.005 0.973±0.005 0.946±0.006
TransformerCPI 0.970±0.006 0.974±0.005 0.937±0.011
IIFDTI 0.984±0.003 0.985±0.003 0.947±0.017
CSCL-DTI 0.987±0.001 0.988±0.001 0.951±0.005

DrugBank

Vina 0.503±0.005 0.436±0.007 0.513±0.009
DeepDTA 0.784±0.004 0.519±0.007 0.635±0.010
DeepConv-DTI 0.782±0.005 0.472±0.005 0.626±0.016
MolTrans 0.501±0.010 0.203±0.006 0.417±0.015
GraphDTA 0.786±0.006 0.517±0.008 0.638±0.008
TransformerCPI 0.782±0.005 0.500±0.015 0.660±0.007
IIFDTI 0.797±0.004 0.527±0.009 0.679±0.008
CSCL-DTI 0.808±0.002 0.557±0.007 0.689±0.010

molecular graph and graph-based methods do not consider the
context features of drug SMILES. Finally, compared to multi-
view method (i.e., IIFDTI), CSCL-DTI also achieved superior
results (e.g., 2% and 3% improvement of AUPR on GPCR and
DrugBank dataset, respectively). This is because the multi-
view embeddings in CSCL-DTI can better extract intricate
relationships through hierarchical contrastive learning strate-
gies. Furthermore, we construct imbalanced datasets to assess
the robustness of CSCL-DTI, The details of the comparative
experiments on the imbalanced dataset can be found in the
Appendix II1.

D. Ablation study

We conducted ablation study on the GPCR dataset from
two perspectives: component ablation and model design, to
further check the effectiveness of different configurations of
CSCL-DTI. The result of each experiment were determined
by repeating the experiment 10 times using different seeds.

1) component ablation: We remove relevant network struc-
tures, namely contrastive learning (CL) and BAN, to confirm
their contribution in performance improvement. On one hand,
we design tailored contrastive learning strategies for drug
and target representations to extract multi-view features. To
study the effectiveness of this central idea, we implement
three variants of our model. Specifically, the models ”w/o
CL d” and ”w/o CL t” indicate the removal of corresponding
CL strategies for drug and target representations in CSCL-
DTI, respectively. And ”w/o CL” denotes the removal of CL
strategies for both drug and target representations in CSCL-
DTI. On the other hand, different from previous multi-view
based methods that simply concantenate the drug and target
features, the proposed CSCL-DTI adopt BAN to align learned
representations across different views. The model ”w/o BAN”
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Fig. 2. Comparison between CSCL-DTI and its variants on GPCR dataset.
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Fig. 3. Parameter sensitivity analysis for CSCL-DTI on GPCR dataset.

denotes the elimination of a BAN module from CSCL-DTI.
From Fig. 2a, we can draw the following conclusions: (i)
either only using CVRL for drug representation or SSCL for
target representation, the Recall result decrease at least by
about 1.6% comparing to the full model. This result shows
that hierarchical contrastive learning strategies are effective for
feature representations. Moreover, the CVRL contributes more
than SSCL while multi-view CL strategy can bring relatively
more informative features than self-supervised CL strategy. (ii)
Comparing the results of ”w/o BAN” and CSCL-DTI, the BAN
module improves the results on AUPR and Recall by nearly
1% and 3.8%, respectively. In summary, our findings highlight
the essential contributions of contrastive learning and the BAN
module to the effectiveness of CSCL-DTI.

2) model design: We design GCN-based and Transformer-
based encoder to learn drug and target representations based
on molecular graph and anmino acid sequences, respectively.
We separately replaced two encoders in our model with other
existing models to validate that these selected modules are
effective. Specifically, the models ”GAT” and ”GIN” denote
that the molecular graph encoder on drug representation is
replaced by GAT and GIN, respectively, and the remaining
settings remain the same as the full model. Additionally,
the model ”CNN” adopts CNN module to obtain the target
representation from target sequences. As illustrated in Fig. 2b,
CSCL-DTI shows considerable performance advantage over
these variants. The performance of ”GAT” model is close to
the full model, with a difference of just 0.005 in AUC and
0.008 in AUPR, respectively.

E. Parameter analysis

The performance of our model is influenced by several
significant parameters, such as the number of GCN layers
n, weight factor α and β, learning rate p, drop rate λ and
temperature parameter T . Note that here all the sensitivity
analysis experiments are conducted on the GPCR dataset, and
the analysis of the parameter p, λ, and T is provided in the
Appendix III1.

1) Impact of the number of GCN layers: We evaluate our
model by varying n from 1 to 4 with a step value of 1. Fig.
3a displays how the performance gradually rises and finally
falls as n varies, with n = 2 achieving its best performance.

2) Impact of weight factor: Weight factor α and β represent
the proportions of contrastive loss and cross-entropy loss
in the total loss. To evaluate their impact, we choose their
values from {0.01, 0.1, 1, 1.5, 50, 100}. Fig. 3b and Fig. 3c
demonstrate that the best performance is achieved when α and
β are simultaneously set to 0.1 and 1.5, respectively.

F. Case Study

We conducted a case study on the DrugBank dataset to
further validate the effectiveness of our proposed CSCL-DTI.
Specifically, we applied CSCL-DTI for de novo predictions
on the important drug Diacerein (DrugBank ID: DB11994)
and target Aspartate aminotransferase (Uniprot ID: Q2TU84),
respectively. Table III presents the top 10 predicted candidate
targets for the new drug Diacerein predicted by CSCL-DTI
among a total of 4,254 targets. From the result we can observe
that 5 out of 10 targets were successfully predicted (marked
in bold). The details of predicting candidate drugs for the
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Table. III. The predicted candidate targets for new drug
Diacerein.

Rank Target name Target Uniprot ID Evidence
1 Nitric oxide synthase P35228 PMID: 12747270
2 Retinoic acid receptor gamma P13631 Unconfirmed
3 Muscarinic acetylcholine receptor P11229 Unconfirmed
4 Glutamate receptor Q05586 PMID: 24121043
5 TGF-beta receptor type-2 P37173 PMID:10329300
6 Cytochrome P450 P11510 PMID: 34821124
7 Bile salt export pump O95342 PMID: 29355060
8 Cholinesterase P06276 Unconfirmed
9 Estrogen receptor P03372 Unconfirmed
10 Prostaglandin G/H synthase 1 P23219 Unconfirmed

new target Aspartate aminotransferase can be found in the
Appendix IV1. All these results suggested that CSCL-DTI
is a beneficial method for accurately predicting interacting
candidates for unknown drugs and targets.

IV. CONCLUSION

In this paper, we introduce CSCL-DTI, a novel dual-
channel contrastive learning model for predicting drug-target
interactions. Specifically, the proposed CSCL-DTI employs
cross-view contrastive learning and self-supervised contrastive
learning for drug multi-view representations and target protein
amino acid sequence representations, respectively. This ef-
fectively captures the intrinsic relationships between different
views. Comprehensive experiments demonstrate that CSCL-
DTI outperforms seven state-of-the-art methods. This study
focuses on utilizing a protein sequence, drug sequence, and
molecular graph as input. In the future, we will focus on
enhancing the alignment of specific views in CSCL-DTI by
incorporating cross-view features for target representation,
such as the binding pockets of 3D proteins.
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