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A B S T R A C T

Computational approaches for predicting drug–drug interactions (DDI) can significantly facilitate combination
therapy and drug discovery. Existing similarity-based methods often overlook simple yet valuable structural
information or ignore multiple relationships from biological entities (e.g., target proteins and enzymes).
Meanwhile, matrix factorization-based methods can alleviate the inherent sparsity issues in DDI data. However,
this line of work usually only considers the original association information of DDI pairs. To address
these issues, we proposed a novel tensor factorization strategy with effective constraint terms (CTF-DDI)
for potential DDI prediction. Specifically, we first obtained drug features by constructing specific similarity
matrices based on drug structure and drug-related biological associations. Then, a novel constrained tensor
factorization (CTF) module was designed to further reconstruct drug similarity by introducing Hessian and
𝐿2,1 regularization as constraints. Finally, we trained a deep neural network to extract nonlinear features for
DDI prediction. Experimental results on two benchmark datasets demonstrated that the proposed CTF-DDI
model outperforms classical tensor factorization and deep learning models. Furthermore, ablation and case
studies validated the performance of CTF-DDI in DDI prediction. The source code of CTF-DDI is available at
https://github.com/angelfacedac/CTF_DDI.
1. Introduction

Drug–drug interactions (DDI) refer to the alterations in pharmaco-
logical effects caused by the simultaneous administration of two or
more drugs [1]. The combination therapy of multiple drugs provides
promising prospects for disease treatment, but it also increases the risk
of adverse effects from drug combinations [2]. For example, methotrex-
ate and nonsteroidal anti-inflammatory drugs are commonly used to treat
rheumatoid arthritis. However, these combinations are prone to de-
layed elimination of methotrexate, leading to bone marrow suppression
and gastrointestinal toxicity [3]. The potential DDI prediction presents
one of the most significant challenges in drug discovery, requiring
considerable time and resources for in-vitro and clinical experiments.

Many computational methods have been developed for alleviating
this problem in terms of feature extraction and representation. Conven-
tionally, popular computational methods based on structural similarity
are used to construct the feature matrix of drugs. This is followed
by feature representation through effective encoding methods, such as
non-negative matrix factorization (NMF), which can effectively obtain
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non-negative downscaling matrices for high-dimensional data and is
commonly used in image analysis and processing [4,5]. Recent years
have witnessed the success of machine learning and deep learning-
based approaches proposed to address different issues related to DDI
prediction [6–8]. For these computational methods, representing drug
features simply yet effectively is one of the key steps towards obtain-
ing satisfactory performance. Existing methods for representing drug
features can be classified into two main categories.

(1) Similarity-based methods: This line of methods relies on the
assumption that drugs with similar structure tend to interact with the
same types of drugs [9]. DDI prediction can be performed based on
drug structural similarity features such as chemical or ligand structure
and side effects. For example, Ferdousi et al. [10] used a similarity
measure based on 12 binary vectors and calculated drug pair similarity
using the Rus-Rao method, validating that higher structural similarity
among drugs correlates with a higher likelihood of DDI. However, these
methods are solely based on drug structure similarity, often ignoring
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information in drug-related biological relationships and their interac-
tions. To enhance the accuracy of DDI prediction, researchers have
integrated similarities in terms of drug-related biological relationships.
For instance, Deng et al. [11] proposed DDIMDL, a multi-modal deep
learning framework designed to incorporate four distinct drug features
— chemical substructures, targets, enzymes, and pathways — sourced
from various datasets. Subsequently, Lin et al. [12] also integrated
multiple sources of drug-related information to predict potential DDIs.
Unlike most methods that utilize only first-order similarity, Zhang
et al. [13] proposed an integrated label propagation framework that
takes into account higher-order interaction similarities for predicting
potential DDI. In addition, neural network-based models have been
developed to extract the similarity of drug nodes in an interaction net-
work. For example, Deepwalk [14] and Node2vec [15] obtained node
embedding of drugs to predict DDI by using random walking, while
LINE [16], SDNE [17], and GAE [18] considered different encoding
methods to capture the nonlinear features for DDI prediction. Although
similarity-based approaches have demonstrated notable prediction per-
formance, only a few methods take into consideration both aspects
of drug structure similarity and drug-related biological relationships.
Additionally, fully leveraging drug similarity remains a challenging
task.

(2) Matrix factorization-based methods: In recent years, matrix
actorization has shown satisfactory results in various bioinformatics
asks [19–21]. DDI prediction using matrix factorization methods typi-
ally involves decomposing the DDI matrix into several matrices. From
hese matrices, potential features are extracted, and the matrix is recon-
tructed to identify new DDI. For example, Vilar et al. [22] calculated
he interaction probability matrix to predict new DDI by multiplying
he DDI matrix and the IPF matrix, while Zhang et al. [23] intro-
uced multi-relationship matrix factorization of drug properties into
he matrix factorization to predict potential DDI. Traditional matrix
actorization has many variants, such as singular value decomposition
SVD) and graph factorization (GF) [24]. Subsequently, GraRep [25]
onsidered the higher-order proximity of networks and devised k-step
ransfer probability matrices for factorization. HOPE [26] used some
ell-known network similarity metrics. However, matrix factorization

truggles with handling higher-dimensional data. In contrast, tensor
actorization serves as a higher-order generalization of matrix factoriza-
ion. It decomposes a tensor into the product of several smaller tensors
o obtain its approximation. Therefore, tensor factorization not only
nherits the characteristics of matrix factorization in handling data but
lso addresses the challenges of filling in sparse datasets and reducing
he complexity of high-dimensional data. The canonical polyadic (CP)
actorization model represents a standard tensor factorization method
hat solely considers the original drug association information for DDI
rediction. Subsequently, Narita et al. [27] proposed the TFAI model,
hich introduced graph Laplacian regularization. Similarly, Huang
t al. [28] proposed the TDRC model by incorporating similarity infor-
ation as a constraint. With the remarkable successes of deep learning

echniques across various fields like image classification [29,30] and
atural language processing [31], deep neural networks (DNN) have
merged as powerful tools applicable to biomedical prediction, offer-
ng robust capabilities for learning and characterizing the nonlinear
eatures of drugs. For example, to achieve overall high prediction
ccuracy and good generalization, Zhang et al. [32] proposed using
eighted average and classifier ensemble models to integrate chemical,
iological, phenotypic, and network data for predicting DDI. Moreover,
onsidering the different forms of features in deep learning techniques,
yu et al. [33] introduced the DeepDDI model using structural similar-

ty features. Perozzi et al. [14] proposed the DeepWalk model, which
ses drug pairs as nodes in an isomorphic graph for DDI prediction.
hen et al. [34] integrated features from drug molecular structures and
nowledge graphs into the MUFFIN model. These matrix factorization-
ased methods demonstrate good results in DDI prediction and partially
27

lleviate the limitations of similarity-based methods. However, they
still do not fully utilize drug similarity information and may suffer from
overfitting.

In summary, existing similarity-based methods often neglect the si-
multaneous construction of similarity matrices from both drug structure
and drug-related biological relationships, failing to fully harness com-
prehensive drug similarity information. Moreover, matrix factorization-
based approaches are prone to model overfitting due to their inade-
quate utilization of drug similarity information and other constraints. In
this paper, we propose a novel constrained tensor factorization method,
named CTF-DDI, for addressing drug–drug interactions prediction prob-
lem. Our method leverages diverse similarity calculation methods to
extract information from both drug structure and drug-related biolog-
ical relationships. These similarities are integrated through weighted
averaging to construct comprehensive drug similarity matrices. Then,
we use the CP factorization model, incorporating drug similarity infor-
mation alongside Hessian regularization and 𝐿2,1 regularization con-
straints to enhance model robustness. The resulting feature matrices
are fed into a DNN for DDI prediction. This method for the first time
learns the structural similarity and drug-related biological relationships
in an end-to-end manner. Experimental results on two benchmark
datasets demonstrate that CTF-DDI outperforms existing similarity-
based and tensor factorization-based baseline methods, showcasing
superior performance and better generalization ability.

2. Methods

In this section, we first introduce the flowchart of the proposed
model called CTF-DDI (Section 2.1). Then, we further describe the
two main modules of CTF-DDI model, namely similarity fusion module
(Section 2.2) and constrained tensor factorization (CTF) module (Sec-
tion 2.3). Finally, we present the details of DDI task prediction, called
DNN module (Section 2.4).

2.1. Flowchart of CTF-DDI

Fig. 1 illustrates the flowchart of CTF-DDI, which can be divided
into main three parts. Specifically, we first computed and integrated
distinct drug similarities sourced from DS1 and DS3 datasets, yielding
two similarity matrices pertaining to drug structure and drug-related
biological relationships. These matrices, combined with Hessian and
𝐿2,1 regularization, which serve as constraints in the traditional CP
factorization model. Next, we decomposed the tensor  of known DDI
types to derive the feature matrices 𝑪, 𝑷 , 𝑭 utilizing the CTF approach,
with the column vector (𝒄𝑖 𝒑𝑗 𝒇𝑘)′ serving as input to the deep neural
networks (DNN) model. Finally, we obtained the reconstructed tensor
 ′, representing the drug–drug interactions types and their respective
probabilities.

2.2. Similarity fusion module

In this paper, 𝑺1 and 𝑺2 represent similarity matrices obtained by
calculating different drug similarities in terms of both drug structure
and drug-related biological relationships, where 𝑺 ∈ 𝑅𝑚×𝑚 and 𝑚
denotes the number of drugs. For the DS3 dataset, seven similarity
matrices are calculated. Drug structure similarity is based on chemical
similarity, ligand-based similarity, side-effects similarity, and similarity
based on the anatomical, therapeutic, and chemical (ATC) classification
system. Drug-related biological similarity is constructed based on gene
ontology (GO) semantic similarity, sequence similarity, and distance
on the protein-protein interactions (PPI) network. The specific com-
putational process for obtaining drug similarity matrices is outlined
below.

(1) Chemical similarity: The standard Simplified Molecular Input
Line Entry System (SMILES) representations of drug molecules are
obtained from the DrugBank. Subsequently, hash fingerprints are gen-
erated using the Chemical Development Kit (CDK) with default param-

eters. The similarity between drugs is then determined by calculating
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Fig. 1. Flowchart of the CTF-DDI model.
a two-dimensional Tanimoto score based on the hash fingerprints,
equivalent to the Jaccard score of the fingerprints . In essence, each
fingerprint is treated as a specific set of elements, and the similarity
between two drugs is expressed as the magnitude of their intersection.

(2) Ligand-based similarity: The Similarity Ensemble Approach
(SEA) correlates protein receptors by evaluating the chemical 2D simi-
larity of ligand sets that regulate their function. Utilizing the standard
SMILES representations of drugs, the SEA search tool compares them
against a compendium of ligand sets and computes the E-values of these
sets. Drugs are queried against two ligand databases provided in the
tool (MDL Drug Data Report and WOMBAT), and drug fingerprints are
calculated using two different methods (Scitegic ECFP4 and Daylight)
to generate a list of four similar ligand sets. After harmonizing the
four lists and screening the drug-ligand pairs using E-values greater
than 10−5, a compilation of related protein receptor families for each
drug is obtained. Finally, the Jaccard score between receptor families
is computed to determine the similarity between drugs.

(3) Side-effect similarity: The side effect of drugs is sourced from
SIDER database, employing text mining techniques to extract associ-
ations between drugs and their side effects from package inserts. To
enhance the comprehensiveness of the side effect profile, predictions
were made for drugs absent in SIDER based on their chemical prop-
erties. Subsequently, the similarity between drugs was established by
computing Jaccard scores between the known side effects, or the first
13 predicted side effects in the case of drugs lacking known data.
However, side effects related to renal failure or renal insufficiency,
renal tubular acidosis, and papillary necrosis were deliberately omitted
from consideration to mitigate bias towards side effects directly linked
to drug interactions.

(4) ATC-related similarity: ATC-related data was obtained from
DrugBank database, and similarities among ATC classifications were
determined using a semantic similarity algorithm . The semantic simi-
larity algorithm establishes a relationship between the probability 𝑝(𝑥)
and all nodes (i.e., ATC levels) 𝑥 within the ATC hierarchy. This is ac-
complished by tallying the number of levels below 𝑥 and subsequently
computing the maximum ATC level 𝑐 shared by all their common
ancestors, expressed as −𝑙𝑜𝑔𝑝(𝑐).

(5) Sequence similarity: The similarity between drugs is com-
puted using the Smith-Waterman sequence comparison score between
drug-target pairs. Following the previous normalization method, the
Smith-Waterman score is derived by computing the geometric mean of
the scores obtained from comparing each sequence with itself.

(6) PPI network distance similarity: Distances between each drug-
target pair are computed based on the shortest paths in the PPI net-
work. And these calculated shortest path distances are transformed into
28
corresponding similarity values using the formula outlined below.

𝑆(𝑃 , 𝑃 ′) = 𝐴𝑒−𝐷(𝑝,𝑝′) (1)

where 𝑆(𝑃 , 𝑃 ′) represents the computed similarity value between two
proteins, and 𝐷(𝑝, 𝑝′) denotes the shortest path between these proteins
in the PPI network. The parameter 𝐴 and self-similarity are set to 0.9
and 1, respectively.

(7) GO semantic similarity: We calculated GO semantic similarities
between drug-target pairs using the csbl.goR package, selecting the
option to use all three gene ontologies.

For the DS1 dataset, chemical, side effect, and offside effect similar-
ities were selected to compute the structural similarity matrix 𝑺1. And
sequence, transporter, enzyme, pathway, and indication similarities
were selected to compute the drug-related biological similarity matrix
𝑺2.

2.3. Constrained tensor factorization (CTF) module

We first introduce one of the most commonly used factorization
methods, CP factorization, to reconstruct the drug–drug–type tensor.
Next, we describe our CTF method that incorporates drug similarity
and other constraints into the CP model. Subsequently, we develop an
efficient optimization method for solving the CTF objective function.

(1) CP factorization: For one dataset, given the drug–drug–type
tensor  , the CP factorization model can be represented as the follow-
ing optimization problem.

min
𝑪′ ,𝑷 ′ ,𝑭

‖

‖

 − [[𝑪 ′,𝑷 ′,𝑭 ]]‖
‖

2 (2)

where ‖⋅‖ is the norm of a tensor. 𝑪 ′,𝑷 ′ ∈ 𝑅𝑚×𝑟 are two drug feature
matrices, where 𝑪 ′ (or 𝑷 ′) is not constrained by 𝑺1 (or 𝑺2). 𝑭 ∈
𝑅𝑡×𝑟 represents feature matrix of association type. [[𝑪 ′,𝑷 ′,𝑭 ]] is the
reconstructed tensor and 𝑟 is the rank.

(2) Objective function of CTF: The traditional CP model solely
relies on original association information, failing to fully exploit drug
similarity data. Therefore, we proposed the CTF, which integrates drug
similarity into the CP to maximize its utilization and incorporates Hes-
sian and 𝐿2,1 regularization terms to constrain the model. On one hand,
compared to traditional Laplace regularization, Hessian regularization
better aligns with the data characteristic, enhancing performance in
preventing overfitting after data dimensionality reduction. On the other
hand, unlike the sparsity requirement of the 𝐿1 norm, the 𝐿2,1 norm
also regulates the sparsity of rows and not only combats overfitting but
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also stabilizes the optimization process. The objective function of CTF
is defined as follows.

 (𝑪, 𝑷 , 𝑭 ) = min
𝑪,𝑷 ,𝑭

‖ − [[𝑪, 𝑷 , 𝑭 ]]‖2 +
𝜇
2
‖

‖

‖

𝑺1 − 𝑪𝑴𝑪𝑇 ‖
‖

‖

2

𝐹

+
𝜂
2
‖

‖

‖

𝑺2 − 𝑷𝑵𝑷 𝑇 ‖
‖

‖

2

𝐹
+ 𝛼

2
tr(𝑪𝑇𝑼𝑪) +

𝛽
2
tr(𝑷 𝑇 𝑽 𝑷 )

+ 𝜆
2

(

‖𝑪‖

2
2,1 + ‖𝑷 ‖

2
2,1 + ‖𝑭‖

2
2,1 + ‖𝑴‖

2
𝐹 + ‖𝑵‖

2
𝐹

)

(3)

where ‖⋅‖𝐹 is the Frobenius norm of a matrix. 𝑪 and 𝑷 are drug feature
matrices constrained by 𝑺1 and 𝑺2. 𝑴 and 𝑵 represent the projection
matrices, and a real-valued function 𝑓 (𝑥, 𝑦) = 𝑥𝑴𝑦𝑇 , with 𝑥 and 𝑦
representing the row vectors of 𝑪 (or 𝑷 ), is utilized to approximate
𝑺1 (or 𝑺2). Besides, 𝜇 and 𝜂 control the contribution of 𝑺1 and 𝑺2,
respectively. 𝑡𝑟(⋅) corresponds to the Hessian regularization term. 𝛼 and
𝛽 represent the parameters of the Hessian regularization term. 𝜆 is the
regularization coefficient.

(3) Optimization method: We employed an alternately updating
rule as optimization method for the objective optimization. To facilitate
the solution of 𝑪, 𝑷 , 𝑭 , we first expressed the objective function in
terms of the augmented Lagrangian.

 = min
𝑪,𝑷 ,𝑭

‖ − [[𝑪, 𝑷 , 𝑭 ]]‖2 +
𝜇
2
‖

‖

‖

𝑺1 − 𝑪𝑴𝑪𝑇 ‖
‖

‖

2

𝐹
+

𝜂
2
‖

‖

‖

𝑺2 − 𝑷𝑵𝑷 𝑇 ‖
‖

‖

2

𝐹

+ 𝛼
2
tr(𝒁𝑇

1 𝑼𝒁1) +
𝛽
2
tr(𝒁𝑇

2 𝑽 𝒁2) + ⟨𝒀 1,𝒁1 − 𝑪⟩ + ⟨𝒀 2,𝒁2 − 𝑷 ⟩

+ 𝜃
2
(‖
‖

𝒁1 − 𝑪‖

‖

2
𝐹 + ‖

‖

𝒁2 − 𝑷 ‖

‖

2
𝐹 )

+ 𝜆
2

(

‖𝑪‖

2
2,1 + ‖𝑷 ‖

2
2,1 + ‖𝑭‖

2
2,1 + ‖𝑴‖

2
𝐹 + ‖𝑵‖

2
𝐹

)

(4)

where ⟨⋅, ⋅⟩ denotes the inner product of the two. 𝒁1 and 𝒁2 are
auxiliary variables. 𝑼 and 𝑽 are the Laplace matrices computed from
the matrices 𝑺1 and 𝑺2, respectively. 𝒀 1 and 𝒀 2 are the Lagrange
multiplier. 𝜃 is the penalty parameter. 𝑰 is an identity matrix of size
(𝑟𝑥𝑟).

Update the feature matrix 𝑭 . When the other variables are fixed,
the problem reduces to solving the following function.

𝑚𝑖𝑛
𝑭

‖

‖

‖

(3) − 𝑭 (𝑪 ⊗ 𝑷 )𝑇 ‖‖
‖

2

𝐹
+ 𝜆

2
‖𝑭‖

2
2,1 (5)

here (3) is the mode-3 matricization of tensor  , and ⊗ denotes the
hatri–Rao product. The closed-form solution for 𝑭 is as follows.

𝑭 = (3)(𝑪 ⊗ 𝑷 )((𝑪 ⊗ 𝑷 )𝑇 (𝑪 ⊗ 𝑷 ) + 𝜆
2
𝑰)−1 (6)

Update the feature matrix 𝑪. Similarly, the matrix 𝑪, constrained
y 𝑺1, can be obtained through solving the function.

𝑖𝑛
𝑪

‖

‖

‖

(1) − (𝑷 ⊗ 𝑭 )𝑇 ‖‖
‖

2
+ ⟨𝒀 1,𝒁1 − 𝑪⟩ + 𝜃

2
‖

‖

𝒁1 − 𝑪‖

‖

2
𝐹

+
𝜇
2
‖

‖

‖

𝑺1 − 𝑪𝑴𝑪𝑇 ‖
‖

‖

2

𝐹
+ 𝜆

2
‖𝑪‖

2
2,1

(7)

where (1) is the mode-1 matricization of tensor  . Inspired by [35],
he problem can be further transformed as follows.

𝑖𝑛
𝑪

‖

‖

‖

(1) − 𝑪(𝑷 ⊗ 𝑭 )𝑇 ‖‖
‖

2
+ 𝜃

2
‖

‖

‖

‖

𝒁1 − 𝑪 +
𝒀 1
𝜃

‖

‖

‖

‖

2

𝐹

+
𝜇
2
‖

‖

‖

𝑺1 − 𝑪𝑴𝑱 𝑇
1
‖

‖

‖

2

𝐹
+ 𝑡𝑟(𝑹𝑇

1 (𝑪 − 𝑱 1))

+
𝜌1
2
‖

‖

𝑪 − 𝑱 1
‖

‖

2
𝐹 + 𝜆

2
‖𝑪‖

2
2,1

(8)

where 𝜌1 > 0 is referred to as the penalty parameter, and 𝑱 1 is an
auxiliary variable. The solution is then obtained by taking the partial
derivative.

𝑱 1 = (𝜇𝑺1𝑪𝑴 + 𝜌1𝑪 +𝑹1)(𝜇(𝑪𝑴)𝑇 (𝑪𝑴) + 𝜌1𝑰)−1 (9)
29

𝑹1 = 𝑹1 + 𝜌1(𝑪 − 𝑱 1) (10)
The feature matrix 𝑪 is obtained as follows.
𝑪 = ((1)(𝑷 ⊗ 𝑭 ) + 𝜇𝑺1𝑱 1𝑴𝑇 + 𝜌1𝑱 1 −𝑹1 + 𝜃𝒁1 + 𝒀 1)

((𝑷 ⊗ 𝑭 )𝑇 (𝑷 ⊗ 𝑭 ) + 𝜇𝑴𝑱 𝑇
1 𝑱 1𝑴𝑇 + 𝜌1𝑰 + 𝜆𝑰 + 𝜆𝑫𝑰 + 𝜃𝑰)−1

(11)

where 𝑹1 is the Lagrange multiplier. 𝑫 is a diagonal matrix with the
𝑖th diagonal element 𝑫𝑖𝑖 = 1∕2 ‖

‖

(𝑪)𝑖‖
‖2, i.e., half of the 𝐿2 norm of the

𝑖th column vector in matrix 𝑪.
The update rules of 𝒁1 and 𝒀 1 are as follows.

{

𝒁1(𝑡 + 1) = (𝜃𝑰 + 𝛼𝑼 )−1(𝜃𝑪 − 𝒀 1(𝑡))

𝒀 1(𝑡 + 1) = 𝒀 1(𝑡) + 𝜃(𝒁1(𝑡 + 1) − 𝑪)
(12)

Update the feature matrix 𝑷 . The process shares a similar opti-
ization structure to Eq. (7). The update process is as follows.

2 = (𝜂𝑺2𝑷𝑵 + 𝜌2𝑷 +𝑹2)(𝜂(𝑷𝑵)𝑇 (𝑷𝑵) + 𝜌2𝑰)−1 (13)

2 = 𝑹2 + 𝜌2(𝑷 − 𝑱 2) (14)

= ((2)(𝑪 ⊗ 𝑭 ) + 𝜂𝑺2𝑱 2𝑵𝑇 + 𝜌2𝑱 2 −𝑹2 + 𝜃𝒁2 + 𝒀 2)

(𝑪 ⊗ 𝑭 )𝑇 (𝑪 ⊗ 𝑭 ) + 𝜂𝑵𝑱 𝑇
2 𝑱 2𝑵𝑇 + 𝜌2𝑰 + 𝜆𝑰 + 𝜆𝑸𝑰 + 𝜃𝑰)−1

(15)

where 𝑹2 is the Lagrange multiplier, and 𝜌2 is the penalty parameter.
𝑸 is a diagonal matrix with the 𝑖th diagonal element 𝑸𝑖𝑖 = 1/2 ‖

‖

(𝑷 )𝑖‖
‖2,

i.e., half of the 𝐿2 norm of the 𝑖th column vector in matrix 𝑷 .
The update rules of 𝒁2 and 𝒀 2 are as follows.

{

𝒁2(𝑡 + 1) = (𝜃𝑰 + 𝛽𝑽 )−1(𝜃𝑷 − 𝒀 2(𝑡))

𝒀 2(𝑡 + 1) = 𝒀 2(𝑡) + 𝜃(𝒁2(𝑡 + 1) − 𝑷 )
(16)

Update the projection matrices 𝑴 and 𝑵. The updates for
and 𝑵 employ an efficient solver developed using the conjugate

radient method (CG). Before the iteration, set 𝑴 (0) = 0, 𝑹(0) =
𝑪𝑇𝑺1𝑪−𝜇𝑪 (𝑇 )𝑪𝑴 (0)𝑪 (𝑇 )𝑪−𝜆𝑴 (0). Repeat the iteration until ‖‖

‖

𝑹(𝑘)‖
‖

‖

2

𝐹
s sufficiently small. The update process is as follows.

𝑖𝑛
𝑴

(
𝜇
2
‖

‖

‖

𝑺1 − 𝑪𝑴𝑪𝑇 ‖
‖

‖

2

𝐹
) + 𝜆

2
‖𝑴‖

2
𝐹 (17)

𝑚𝑖𝑛
𝑵

(
𝜂
2
‖

‖

‖

𝑺2 − 𝑷𝑵𝑷 𝑇 ‖
‖

‖

2

𝐹
) + 𝜆

2
‖𝑵‖

2
𝐹 (18)

𝑴 and 𝑵 are updated through the equations.

𝑴 = 𝐶𝐺(𝑺1,𝑪 ,𝑪 , 𝜇, 𝜆),𝑵 = 𝐶𝐺(𝑺2,𝑷 ,𝑷 , 𝜂, 𝜆) (19)

Algorithm 1 outlines the key steps of the CTF method. The input
consists of the tensor  representing the known DDI types, along with
the drug structure similarity matrix 𝑺1, the drug-related biological sim-
ilarity matrix 𝑺2, the rank 𝑟, the weighting parameters 𝜇, 𝜂, the Hessian
regularization parameters 𝛼, 𝛽, the penalty parameter 𝜃, the regulariza-
tion coefficient 𝜆, and the maximum iterations 𝑡𝑚𝑎𝑥. The output consists
of drug feature matrix 𝑪 constrained by 𝑺1, drug feature matrix 𝑷
constrained by 𝑺2, and association type feature matrix 𝑭 , respectively.
Specifically, initialization of the algorithm involves stochastic-ally ini-
tializing the matrices, setting up the initial parameters, and defining
the iteration index (Line 1). The iterative process of the algorithm is
shown in Line 2 onward. Through the optimization derivation of the
objective function, the projection matrices (Line 3), followed by the
feature matrices are updated (Lines 4–8), until convergence is achieved
and the loop terminates, as indicated by the convergence condition.

2.4. DNN module

To leverage the advantages of deep learning in feature extrac-
tion, we combined with the CTF method and a DNN, resulting in a
hybrid model named the tensor factorization strategy with effective
constrained terms for potential drug–drug interactions prediction (CTF-
DDI). In this study, the DNN contains 𝐷 fully connected layers, and
the propagation process uses a forward propagation algorithm, where

the output of the previous layer is used as the input of the next layer.
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Algorithm 1: The algorithm of CTF
Input :  , S1, S2, 𝛾, 𝜇, 𝜂, 𝛼, 𝛽, 𝜆, 𝜃 and 𝑡𝑚𝑎𝑥
Output: feature matrices C, P, and F

1 Initialization: 𝑡 ← 0, C, P, F , Y 1(𝑡),Y 2(𝑡) = 0, Z1(𝑡),Z2(𝑡) = 0,
R1,R2 = 0, 𝜌1, 𝜌2 = 1;

2 while 𝑡 ≤ 𝑡𝑚𝑎𝑥 do
3 Update M , N ← Eq. (19)
4 Update F ← Eq. (6)
5 Update J1, R1, C ← Eqs. (9), (10), (11)
6 Get Z1(𝑡 + 1), Y 1(𝑡 + 1) ← Eq.
7 Update J2, R2, P ← Eqs. (13), (14), (15)
8 Get Z2(𝑡 + 1), Y 2(𝑡 + 1) ← Eq. (16)
9 if the convergence condition is met then
10 break
11 𝑡 ← 𝑡 + 1

12 return C, P, F

Table 1
Description of the experimental datasets.

Datasets Drugs Pairs Interactions Label value

DS1 548 300 304 97 168 [0, 1]
DS3: CYP 807 651 249 10 078 [0, 1]
DS3: NCYP 807 651 249 40 904 [0, 1]

We used binary cross-entropy (BCE) as loss function and the model
is continuously optimized to minimize the loss function to obtain the
predicted DDI probabilities.

Specifically, the feature matrices 𝑪, 𝑷 , and 𝑭 , corresponding to
ach element 𝑥𝑖𝑗𝑘 of the original tensor  via CTF, are concatenated
nto a column vector (𝒄𝑖 𝒑𝑗 𝒇𝑘)′ by selecting the 𝑖th row of 𝑪 , the
th row of 𝑷 , and the 𝑘th row of 𝑭 , respectively. Subsequently,

forward propagation algorithm traverses through each fully con-
ected layer, employing the ReLU activation function ℎ(⋅), i.e., ℎ(𝑥) =

𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(𝑥, 0). Following the learning process of the multi-layer
fully-connected neural network, the output 𝑥𝑛 is obtained. The 𝑆𝑖𝑔𝑚𝑜𝑖𝑑
activation function is then applied to obtain the output as the predicted
interaction 𝑥′𝑖𝑗𝑘 between drug 𝑖 and drug 𝑗 under each association type.
Consequently, for each element in the tensor  , the corresponding row
concatenation of its feature matrix serves as a separate input layer,
which is learned by the DNN to obtain the prediction results of DDI
under various association types. As a result, a new tensor  ′ is obtained,
from which potential interactions and their association types can be
inferred.

3. Results

3.1. Materials

(1) Datasets: To evaluate the performance of our proposed CTF-DDI
model, we adopted two widely-used benchmark datasets. One is the
DS1 [36], which contains 548 drugs and 97168 DDI. We used DS1 as a
dataset for binary-class DDI prediction, and in the tensor  , the value is
1 if there is an interaction between drugs, and 0 otherwise. The other is
the DS3 [37] for multi-class DDI prediction, which involves two types
of DDI, the Cytochrome P450 involved (CYP) and without involving
Cytochrome P450 (NCYP). Table 1 summarizes the details of these two
datasets.

(2) Evaluation metrics: To assess the predictive performance of the
CTF and the CTF-DDI model, we conducted a five-fold cross-validation
analysis on the datasets. And we employed several evaluation metrics,
including Precision, Accuracy, Recall, F1-score (F1), the area under the
30

ROC curve (AUC), and the area under the PR curve (AUPR). a
Table 2
Comparison results of models on the DS1 dataset.

Model AUC AUPR F1 Accuracy Recall Precision

SVD 0.9244 0.9287 0.8453 0.8436 0.8546 0.8362
HOPE 0.9379 0.9435 0.8572 0.8566 0.8608 0.8538
GraRep 0.9336 0.9391 0.8538 0.8531 0.8577 0.8500
Deepwalk 0.9322 0.9375 0.8513 0.8511 0.8524 0.8502
Node2vec 0.9297 0.9354 0.8478 0.8479 0.8473 0.8483
LINE 0.9173 0.9234 0.8307 0.8304 0.8322 0.8292
SDNE 0.9173 0.9204 0.8338 0.8321 0.8424 0.8254
GAE 0.8941 0.8673 0.8227 0.8137 0.8647 0.7846
CTF-DDI 0.9553 0.9579 0.8843 0.8830 0.8944 0.8745

(3) Baselines: We conducted comparative experiments in terms of
both matrix factorization-based and drug similarity-based DDI predic-
tion models.

Matrix factorization-based models: (i) SVD is one of the traditional
methods in matrix factorization. Given a drug–drug similarity matrix,
a reconstructed approximation matrix can be obtained [24]. (ii) HOPE
adopts some well-known network similarity measures such as Katz
Index and Common Neighbors to preserve network structures [26].
(iii) GraRep considers the high-order proximity of network and designs
k-step transition probability matrices for factorization [25].

Similarity-based models: (i) DeepWalk takes drug pairs as node
inputs to the isomorphic graph and feeds them into the classifier
used for DDI prediction [14]. (ii) Node2vec adopts a flexible biased
random walk procedure that smoothly combines breadth-first sampling
and depth-first sampling to generate node sequences [15]. (iii) LINE
directly models node embedding vectors by approximating the first-
order proximity and second-order proximity of nodes, which can be
seen as a single-layer MLP model [16]. (iv) SDNE adopts a deep auto-
encoder to preserve the second-order proximity by reconstructing the
neighborhood structure of each node [17]. (v) GAE utilizes a GCN
encoder and an inner product decoder to learn node embedding [18].

(4) Parameter setting: In the CTF method, six parameters are
nvolved: 𝛾, 𝜇, 𝜂, 𝛼, 𝛽, 𝜃, and 𝜆. Here, 𝛾 is the rank of the reconstruc-
ion tensor. Due to the involvement of numerous crucial parameters
n tensor factorization models, different combinations of parameter
ettings can, to some extent, affect predictive performance. Therefore,

is set to 0.5, 𝛾 ranges from 1 to 100, and 𝜇, 𝜂, 𝛼, 𝛽, and 𝜃 vary
ithin the range of 0 to 1. The method is iterated for 200 times, with

he automatic stopping criterion being the convergence of predicted
ariances. Ultimately, the optimal performance is obtained when 𝛾 =
1, 𝜇 = 0.5, 𝜂 = 0.2, 𝛼 = 0.5, 𝛽 = 0.5, and 𝜃 = 0.5. Similarly, setting the
umber of hidden layers in the DNN of the CTF-DDI model to 3, and
etting the batch size and epoch to 1000 and 300, respectively, yields
he best model performance.

.2. Performance comparison

To evaluate the predictive performance of the CTF-DDI model pro-
osed in this study, a five-fold cross-validation was conducted on both
he DS3 dataset and the DS1 dataset. Classic models are selected for
omparison based on the characteristics of the two datasets. There-
ore, we compared CTF-DDI with other models, including SVD, HOPE,
raRep, DeepWalk, Node2vec, LINE, SDNE, and GAE, for the DDI pre-
iction task. On the DS3 dataset, interactions are categorized into CYP
nd NCYP types. To assess the predictive performance of the CTF-DDI
odel under these two interaction types, the experimental results were

lassified accordingly. On the DS1 dataset, this study comprehensively
valuated the overall predictive performance of the CTF-DDI model.

As shown in Table 2, the CTF-DDI model achieved the highest
verage AUPR of 95.8% and average AUC of 95.5% on the DS1 dataset.
t can be clearly observed that CTF-DDI outperformed other models in

ll metrics. Specifically, CTF-DDI outperformed other models by 1.82%
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Table 3
Comparison results of models under CYP and NCYP on the DS3 dataset.

Model AUC AUPR F1 Accuracy Recall Precision

CYP

SVD 0.8714 0.8687 0.7899 0.7895 0.7915 0.7883
HOPE 0.9113 0.8974 0.8391 0.8391 0.8391 0.8391
GraRep 0.9122 0.8984 0.8335 0.8332 0.8352 0.8318
Deepwalk 0.9000 0.8928 0.8236 0.8232 0.8252 0.8220
Node2vec 0.8949 0.8848 0.8161 0.8163 0.8153 0.8169
LINE 0.8636 0.8603 0.7894 0.7870 0.7894 0.7806
SDNE 0.8949 0.8750 0.8380 0.8366 0.8451 0.8311
GAE 0.7977 0.7220 0.7671 0.7219 0.9156 0.6600
CTF-DDI 0.9807 0.9802 0.9288 0.9281 0.9368 0.9212

NCYP

SVD 0.8698 0.8496 0.7896 0.7892 0.7910 0.7883
HOPE 0.8886 0.8674 0.8166 0.8138 0.8289 0.8047
GraRep 0.8850 0.8659 0.8114 0.8090 0.8215 0.8015
Deepwalk 0.8791 0.8626 0.8010 0.8010 0.8044 0.7976
Node2vec 0.8622 0.8414 0.7862 0.7881 0.7790 0.7935
LINE 0.8499 0.8307 0.7705 0.7647 0.7900 0.7519
SDNE 0.8651 0.8360 0.8029 0.7919 0.8474 0.7628
GAE 0.7830 0.7307 0.7521 0.7092 0.8824 0.6553
CTF-DDI 0.9733 0.9754 0.9227 0.9229 0.9205 0.9251
Fig. 2. Comparison results of other models on DS3 dataset.
to 6.40% on the AUC, 1.50% to 9.46% on the AUPR, and 3.06% to
6.97% on the F1-score.

Table 3 depicts the comparison results of these models on the DS3
dataset, where the best results are highlighted in bold. The results
indicate that the CTF-DDI model demonstrates superior performance
in AUC, AUPR, F1-score, Recall, Precision, and Accuracy. For the
CYP interaction, the AUC and the AUPR reached 0.9807 and 0.9802,
respectively. Similarly, for the NCYP interaction, the model exhibited
slightly better performance compared to other models, with the AUC
and the AUPR reaching 0.9733 and 0.9754, respectively. Furthermore,
CTF-DDI achieved relative improvements of at least 9.66% and 11.5%
in F1-score for CYP and NCYP interactions, respectively.

These superior prediction performances indicate that our proposed
CTF-DDI model is better suited for capturing potential features of
drugs. The CTF method fully utilizes drug information and provides a
more efficient representation of features. This presents an efficient and
reliable model choice for bioinformatics and drug research in related
fields, offering robust support for research and applications within
biomedical domain.

3.3. Ablation study

We performed ablation experiments with the CTF method using
the conventional tensor factorization method: (i) CP is one of the
common forms of standard tensor decomposition without adding any
other constraints. (ii) TFAI introduces graph regularization based on
the CP model but does not make use of similarity information [27].
31
(iii) TDRC is a proposed tensor factorization method based for miRNA-
disease association prediction, which only uses similarity information
as a constraint based on the CP model [28]. In this paper, we also used
it as a baseline to validate the CTF method, denoted as TDRC*.

Since parameter settings have a certain impact on the predictive
performance of the models, for the sake of fairness, the parameters
of various tensor factorization models are set to their optimal values
for comparison. As shown in Fig. 2, the CTF model significantly
outperforms the CP, TFAI, and TDRC* models across all evaluation
metrics, with scores of 0.9844, 0.9879, 0.9530, 0.9645, 0.9418, and
0.9535, respectively. Compared to the other models, CTF shows at least
6.97%, 9.31%, and 7.49% improvement in F1-score, Precision, and
Accuracy, respectively. The error bars represent standard deviation,
and the CTF model’s shorter error bars indicate more stable perfor-
mance. The final results show that optimal DDI prediction performance
is achieved by effectively combining various drug features and corre-
sponding constraints (i.e., drug similarity, Hessian regularization, and
𝐿2,1 regularization), emphasizing the importance of each component
and supporting the model’s effectiveness in handling DDI prediction
tasks.

3.4. Visualization experiment

We iteratively trained the proposed CTF method and examined
the results by projecting the features of the DS3 dataset into a two-
dimensional space using t-distributed stochastic neighbor embedding
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Table 4
Top 5 DDI and their evidence for interaction with drug Amphetamine and Bromocriptine.

Name Type Evidence Description

Amphetamine

Almasilate 72 DrugBank The combination of Amphetamine and Almasilate
may raise serum levels.

Selexipag 60 DrugBank Amphetamine may decrease the antihypertensive
activities of Selexipag.

Thonzylamine 76 DrugBank Amphetamine may decrease the sedative and
stimulatory activities of Thonzylamine.

Desoxyn 49 – unconfirmed.
Oxprenolol 60 DrugBank The therapeutic efficacy of Oxprenolol can be

decreased when used in combination with
Amphetamine.

Bromocriptine

Ubidecarenone 73 DrugBank The risk or severity of hypoglycemia is
increased when Ubidecarenone is combined with
Bromocriptine.

Lisuride 19 DrugBank The risk or severity of adverse effects can be
decreased when Lisuride is combined with
Bromocriptine.

Lorcaserin 49 DrugBank The risk or severity of adverse effects can be
increased when Lorcaserin is combined with
Bromocriptine.

Phenobarbital 4 DrugBank The metabolism of Bromocriptine can be
increased when combined with Phenobarbital.

Trovafloxacin 9 DrugBank The therapeutic efficacy of Bromocriptine can be
increased when used in combination with
Trovafloxacin.
Fig. 3. t-SNE visualization of learned representations under different interaction.

(t-SNE). Specifically, we first randomly selected 10,000 drug–drug–
type data samples (𝒄𝑖 𝒑𝑗 𝒇𝑘) from the original tensor  , with 50%
positive and 50% negative samples. Then the high-dimensional feature
representations (𝒄𝑖 𝒑𝑗 𝒇𝑘) and (𝒄𝑖 𝒑𝑗 𝒇𝑘)′, before and after CTF re-
construction, were projected into the two-dimensional space by t-SNE.
Finally the results before and after training were compared for two
interaction types, CYP and NCYP. The results are shown in Fig. 3, where
red nodes represent negative samples and blue nodes represent positive
samples. During the initial training process, the initial data samples
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are projected in the feature space, showing a lack of clear distinction
between different sample categories. After iterative reconstruction of
CTF, the similarity features of drugs can be effectively fused, and the
Hessian and 𝐿2,1 regularization constraint terms make the similar drugs
closer in the potential space while the data sparsity is lower. From the
results shown in Figs. 3(a) and 3(b), we can see that the reconstructed
data samples, when projected under different interaction types, show a
tendency to be classified and exhibit more obvious clustering patterns.
In addition, we observe significant clustering of samples with the same
labels in specific regions, which suggests that the method succeeds
in categorizing similar samples within the learned feature space, thus
facilitating better differentiation between similar samples. This not only
emphasizes the effectiveness of CTF in predicting DDI, but also implies
that CTF-DDI provides a meaningful representation of the data.

3.5. Case study

To further validate the predictive capability of the CTF-DDI model
for predicting DDI, we conducted a case analysis on two drugs, Am-
phetamine (DB00182) and Bromocriptine (DB01200), selected from the
DrugBank 5.0 dataset. During the experiment, each drug was tested
individually by removing its interactions with other drugs. In other
words, each drug was treated as a new drug with no interactions with
any other drugs in the original tensor, ensuring the accuracy of the
experiments. Subsequently, the predicted results were analyzed, and
the top 20 drug pairs interacting with Amphetamine and Bromocriptine
were selected. Evidence supporting these predicted drug pairs was
then sought using PubMed, DrugBank, and Drug Interactions Checker
provided by Drugs.com. Table 4 shows the top 5 drug pair results for
Amphetamine and Bromocriptine, and the complete results are included
in Table B.2 and Table B.3 in the Appendix. The research findings
indicate that out of the 20 predicted DDI for Amphetamine, 18 have
supporting evidence, while for Bromocriptine, 19 out of the 20 predicted
interactions are confirmed. These above cases show that our proposed
CTF-DDI model can effectively predict potential drug–drug pairs and
thus contribute to drug combination therapy.

4. Conclusion

In this paper, we proposed a novel tensor factorization strategy
with effective constraint terms (CTF-DDI) for predicting DDI and their
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types. The proposed CTF-DDI captures multiple features of drug sim-
ilarity information through tensor factorization with constraints, and
it subsequently extracts nonlinear features to predict DDI by using a
DNN. Based on CP factorization, the constrained tensor factorization
method (CTF) leverages drug similarity information and uses Hessian
and 𝐿2,1 regularization terms as constraints. Compared with the tra-
ditional tensor factorization methods, our method performed better in
prediction. In addition, we constructed the CTF-DDI model by training
a DNN, which can predict DDI more effectively. Through comparative
analysis with other DDI prediction models, the superior prediction
performance of CTF-DDI model was finally verified. However, it is
important to acknowledge the limitations of our approach. One such
limitation lies in the methods employed for fusing drug similarity in-
formation, particularly concerning the availability of reliable negative
samples. Additionally, the data also lacks reliable negative samples,
and information on non-interaction pairs is not accurately obtained. In
future, we aim to address these limitations by refining our selection
and fusion methods for similarity information. In summary, the CTF-
DDI model offers an effective solution for DDI prediction, enabling the
inference of complex disease-drug combinations.
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