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Abstract

With the development of high-throughput sequencing technology, biological sequence data reflecting life information

becomes increasingly accessible. Particularly on the background of the COVID-19 pandemic, biological sequence data play

an important role in detecting diseases, analyzing the mechanism and discovering specific drugs. In recent years,

pretraining models that have emerged in natural language processing have attracted widespread attention in many

research fields not only to decrease training cost but also to improve performance on downstream tasks. Pretraining models

are used for embedding biological sequence and extracting feature from large biological sequence corpus to

comprehensively understand the biological sequence data. In this survey, we provide a broad review on pretraining models

for biological sequence data. Moreover, we first introduce biological sequences and corresponding datasets, including brief

description and accessible link. Subsequently, we systematically summarize popular pretraining models for biological

sequences based on four categories: CNN, word2vec, LSTM and Transformer. Then, we present some applications with

proposed pretraining models on downstream tasks to explain the role of pretraining models. Next, we provide a novel

pretraining scheme for protein sequences and a multitask benchmark for protein pretraining models. Finally, we discuss the

challenges and future directions in pretraining models for biological sequences.
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Introduction

Biological sequence data composed of protein, DNA, and RNA

sequences are an important field in life science. Based on scien-

tific research, biological sequence data imply life rules and offer

an excellent window to explore biochemical roles [1]. Learning

biological sequences by deep learning methods, researchers can

not only infer the biological properties of unseen sequences

but also predict interactions without understanding the under-

lying physical or biological mechanisms [2]. In particular, dur-

ing the coronavirus disease 2019 (COVID-19) pandemic, many

researchers explore related issues based on biological sequences

[3–8]. However, considering that biological sequences are long

and nonnumeric, finding a suitable way to convert biological

sequences into processable representation is difficult. Moreover,
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the lack of labeled biological sequences affects their perfor-

mance on corresponding tasks.

Recently,unsupervised learning [9, 10] on biological sequences

has attractedmany researchers, amongwhich pretrainingmodel

for biological sequence data is a field in great demand. The

pretraining model is a saved model that has been trained in

advance. In general, pretraining models are first trained on

large datasets to be fitted and generalized. Subsequently, the

trained parameters and weights of pretraining models will be

saved. Finally, saved pretraining models are applied in other

tasks directly or after fine-tuning on other datasets. During the

development of the pretraining model for biological sequences,

many different models have made contributions to this field.

Convolutional neural network (CNN) [8, 11–13] models extract

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/advance-article/doi/10.1093/bfgp/elab025/6287893 by Yonsei U

niversity M
edical C

ollege user on 30 M
ay 2021

https://academic.oup.com/


2 Song et al.

Figure 1. Scheme of using pretraining models for biological sequences. It illustrates the process of using pretraining models for biological sequences and consists of

input biological sequences, output representing vectors through pretraining models and downstream applications. Biological macromolecules are generated in Pymol

[30].

features from biological sequences efficiently and optimize

deep learningmodels in transfer learning.Word2vec [14] models

generate reliable embedding vectors for representing biological

sequences and transfer learned knowledge to downstream

tasks. Long short-term memory (LSTM) [15] and ELMO [16]

language models process long biological sequences while

providing context information among biological sequences for

downstream tasks. Transformer [17] and Bert [18] models learn

biological sequences on the basis of attention mechanism,

which improve performance on downstream tasks after

pretraining on large-scale sequence datasets.

Biological sequence can be regarded as a special life language,

similar to human natural language. Thanks to the advancement

of natural language processing (NLP) [19], pretraining models

can effectively extract the characteristics of biological sequences

and encode biological sequences after training in a large unla-

beled corpus. As shown in Figure 1, pretraining language mod-

els and word embedding methods in NLP can embed biologi-

cal sequence with processable low-dimensional representation,

which improve the performance when applied in downstream

tasks [20, 21]. Consequently, pretrainingmodels using NLPmeth-

ods have captured syntactic and semantic information in biolog-

ical sequences.

As shown in many recent works, pretraining models have

achievedmany biological sequence tasks. Pretrainingmodels for

biological sequences have learnt context-sensitive representa-

tion from various unlabeled biological sequences, which implic-

itly reflect general knowledge in biological sequences. Using

pretraining models, the knowledge learned from open field can

be transferred to downstream tasks such as drug–target inter-

action (DTI) [22–24], enhancer–promoter interaction (EPI) [25]

and protein classification [26–29], making most of the methods

perform better with less cost. In addition, features extracted

from several unlabeled sequences are beneficial to taskswithout

enough label data. Moreover, pretraining models can be used

for transfer learning. Such models are initially pretrained on

different datasets and then fine-tuned on the target datasets for

specific tasks, which effectively optimize the network, improve

performance and save time with good scalability.

In this survey, we review literature on pretraining models for

biological sequence data to make readers understand the area

approximately and enlighten other researchers in this area. This

survey is important to novices and researchers who are looking

for an alternative for improving this area,when it comes to using

pretraining models to learn biological sequence data. The key

contributions of this survey are as follows: (1) we summarize and

briefly introduce some important biological sequence datasets

appearing in these works. (2) We conduct a systematic review

on pretraining models for biological sequences and organize

the current methods by different basic methods. (3) We have

introduced some application andmethods for downstream tasks

with proposed pretraining models. (4) We provide an important

scheme and benchmark,which are proposed by previous studies,

for protein pretrainingmodels. (5)We discuss the challenges and

future directions of pretraining models for biological sequence

data, which may provide new ideas for researchers and promote

development in the field.

The remaining of this review is organized as follows: we pro-

vide introduction to biological sequence data and related popu-

lar databases in Overview of biological sequence data. Pretrain-

ingmodels for biological sequences are summarized in Pretrain-

ing model. Some applications on downstream tasks with pro-

posed pretrainingmodels for biological sequences are illustrated

in Application of pretraining model. Scheme and benchmark

offers a novel pretraining model scheme and benchmark for

protein sequences. Challenges and future directions discusses

the challenges in the current methods and future directions in

this field.

Overview of biological sequence data

Biological sequence data contain abundant biometric infor-

mation, which are stored in the sequence structure [31].

Exploring hidden roles in healthy and diseases with biological
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sequences is important. In addition, with the advancement

of next-generation sequencing technology, a growing number

of sequences can be obtained and invested in various deep

learning research tasks. Consequently, in the past few years,

many biological sequence datasets are proposed for different

tasks in various published papers.

In this section, we introduce some details about biologi-

cal sequence data and popular historical databases that are

used frequently in research. We also summarize the biological

sequence databases and datasets that are used by the sur-

veyed papers in Table 1. The brief description and accessible

URL are supposed to provide a convenient way for novices and

researchers, which help them to obtain the necessary databases

and datasets.

Biological sequence data

In general, biological sequence is the long sequence represented

by a string of different and fixed alphabets, in which different

alphabets usually represent differentmicromolecules. For exam-

ple, a DNA sequence is made up of a four-letter alphabet ‘A’, ‘C’,

‘T’ and ‘G’, which represent different kinds of deoxynucleotide

in DNA [52].

DNA sequence, RNA sequence and protein sequence are

collectively called biological sequence. Proteins are important

fundamental macromolecules in the human body, which have

vital functions in life activities. Proteins are always folded into

a unique three-dimensional structure by several amino acid

chains. Protein functions have been determined by protein

structure and sequences for the greater part. Due to the

specific and various 3D conformations, proteins with amino

acid sequences have specific and wide array of functions,

such as transmitting nerve pulses and binding specificity [53].

Consequently, amino acid sequence is often the key research

object to explore protein properties and interactions, such

as DTI [22], compound-protein interaction (CPI) [54], protein

classification [26] and protein function prediction [55].

Similar to protein, DNA is also a bioactive macromolecule

essential for the development and normal operation of organ-

isms in biological cells. Given its vital genetic information, DNA

not only controls the biological inheritance and activities but

also serves as the basis of RNA and protein synthesis. Different

from the folding structure of protein, the molecular structure of

DNA is double helix formed by two polydeoxynucleotide chains

[56]. In bioinformatics, DNA fragment sequences are usually

used for scientific research, such as exploring the interactions

between promoter and enhancer [25, 44]. As a genetic informa-

tion carrier, RNA is another common biological macromolecule.

Most of RNAs are single stranded,which aremade up of a ribonu-

cleotide chain [57]. RNA is closely related to proteins, which can

control protein synthesis. Thus, RNA sequences can reflect life

information from another point of view in bioinformatics [58].

Databases for biological sequence

Protein Data Bank (PDB) [32] is the important collection of bio-

logical macromolecules, which is a 2.5-dimensional structure

database, which preserves crucial information on various bio-

logical macromolecules, such as atomic coordinates, sequences,

references and level 1 and level 2 structural information. The

Structural Classification of Proteins (SCOP) [30] and Structural

Classification of Proteins—extended (SCOPe) [39] are commonly

used protein structural databases that classify known proteins

by family, superfamily, common fold and class, thereby providing

rich information about proteins, such as structural, sequence

data and evolutionary relationships. Pfam [35] is a well-known

protein family database that divides proteins into different fam-

ilies by multiple sequence comparisons and hidden Markov

models. Because of the protein family characteristics of Pfam,

researchers always use Pfam as data sources when proteins with

similar functions are needed by tasks.

Universal Protein (UniProt) [36] is the informative protein

database that integrates the resources of three major databases:

EBI, SIB and PIR. With the continuous increase of protein

sequence data, UniProt has more than 120 million protein

sequences and annotations. SWISS-PROT [33] is the complete

annotated protein sequence database. The advantage of SWISS-

PROT is the detailed annotation information and standardized

nomenclature of protein sequences, which provide annotated

protein sequences for various tasks. UniRef [37] has been a

frequently used protein sequence database since its first release

in 2004. On the basis of different sequence identity levels,

UniRef is divided into three different protein sequence subsets:

UniRef100, UniRef90 and UniRef50, which meet different task

requirements.

DrugBank [45] is a bioinformatic–cheminformatic database

that combines the information of drugs and targets. For drugs,

DrugBank provides drug chemical structures, pharmacological

effects, protein targets, drug–drug interactions, etc. As for pro-

tein targets, DrugBank stores related information, such as pro-

tein sequence, structure and approach. ChEMBL [48] is another

outstanding database that provides reliable information of com-

pound and target, which obtains bioactivity data and struc-

tures for small molecules from a variety of journals. Similar to

ChEMBL, BindingDB [46] is also an open database that extracts

data from scientific literature. BindingDB database primarily

provides binding affinities between compound and target pro-

tein, focusing on drug–target proteins.

Pretraining model

With the development of NLP technology, pretraining models

have gradually become a hot field in deep learning. Owing to the

improvement of software and proposed new methods, pretrain-

ing models have substantially achieved state-of-the-art results

in almost all NLP tasks [59]. Several methods have made con-

tributions to biological sequence-related tasks as a pretraining

model, to improve the performance and speed up the training

process. In the early years, neural network models [11, 14, 15]

have occupied the mainstream of pretraining models, which

generate word vectors for representing sequences. In recent

years, with the introduction of attention mechanism and devel-

opment of Transformer-based methods [17, 18], pretraining lan-

guage models succeeded in many fields. Table 2 summarizes

four types of popular pretraining models and their brief descrip-

tion. In this section, we introduce four categories of pretraining

models for biological sequence data that have been used in

surveyed papers: CNN, word2vec, LSTM and Transformer.

Convolutional neural network

CNN [11], one of the classic neural network structures in deep

learning, has outstanding performance in many fields. Inspired

by local receptive field mechanism, CNN uses convolution oper-

ations to extract features with other network structure to crop

features and transform output. The specific architecture of CNN

determines the unique advantages in the Computer Vision (CV)
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Table 1. List of biological sequence databases and datasets

Category Dataset Year Entities Description URL (Source)

Protein PDB [32] 1971 2.5-dimensional structure of

biological macromolecules

Protein structure database, containing 3D

structures obtained through experiments

http://www.rcsb.org

SWISS-PROT [33] 1986 Protein sequence Annotated protein sequence database http://www.uniprot.org

SCOP [34] 1994 Protein sequences and

structures

Database of protein structure classification

according to the spatial characteristics of protein

domains

http://scop2.mrc-lmb.cam.ac.uk

Pfam [35] 1995 Protein sequence Protein family database, including annotations

and sequences of 17 929 protein families

http://pfam.xfam.org/

UniProt [36] 2002 Protein sequence A database consisting of a large number of

labeled and unlabeled primary protein sequences

http://www.uniprot.org

UniRef [37] 2004 Protein sequence Unlabeled big data protein sequence http://www.uniprot.org

DisProt [38] 2007 Protein sequence The database of disordered proteins https://www.disprot.org/

SCOPe [39] 2012 Protein structural relationships 59 514 protein database (PDB) entries, including

more than 65% of the protein structures in the

PDB

http://scop.berkeley.edu/

BFD [40] 2018 Protein sequences Largest set of protein sequences https://metaclust.mmse

qs.org/.

ProteinNet [41] 2019 Protein sequences and

structure

A standardized dataset for machine learning of

protein structure

https://github.com/aqla

boratory/proteinnet

Nucleic acid GENCODE [42] 2003 Genome annotation Documented the functional annotation of the

genome

https://www.gencodege

nes.org.

circRNADb [43] 2016 circRNAs sequences Contains 32 914 human circRNAs http://reprod.njmu.edu.

cn/circrnadb

TargetFinder [44] 2016 Enhancer–promoter

interactions

Contains enhancer and promoter interactions in

six human cell lines (GM12878, HUVEC, HeLa-S3,

IMR90, K562, NHEK)

https://github.com/

shwhalen/targetfinder

Interaction DrugBank [45] 2006 Drug–target associations 17 000 high-quality standard drug–target

associations

https://www.drugbank.

ca/

BindingDB [46] 2007 Compound–protein interaction 39 747 positive instances and 31 218 negative

instances

http://www.bindingdb.o

rg/bind/

STITCH [47] 2007 Compound–protein interaction Interactions between more than 30 000 small

molecule compounds and 2.6 million proteins

from 1133 species

http://stitch.embl.de

ChEMBL [48] 2009 Drug–target associations Collected 12 482 targets, 1.879 million

compounds and a total of 155 million pieces of

biological activity information

https://www.ebi.ac.uk/

chembl/

HIPPIE [49] 2012 Protein–protein interactions Human PPI dataset with standardized scoring http://cbdm.uni-mainz.

de/hippie/

KIBA [50] 2014 Target–ligand associations 467 targets and 52 498 ligands collected from

ChEMBL and STITCH

https://pubs.acs.org/

doi/abs/10.1021/ci400709

d

GLASS [51] 2015 GPCR-ligand associations A large number of experimentally verified

GPCR-ligand associations

http://zhanglab.ccmb.

med.umich.edu/GLASS/.
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Table 2. Summary of popular pretraining models for biological sequences

Category Algorithm Author Year Description Source code

CNN CNN [11] Lecun et al. 1998 A common deep learning network

architecture inspired by biological

natural visual cognitive mechanisms

word2vec word2vec [14] Mikolov et.al 2013 A well-known unsupervised method to

learn high-quality embedded vectors

representations of words

code.google.com/p/word2vec

doc2vec [60] Mikolov et.al 2014 An improved unsupervised embedding

method for variable length texts

https://radimrehurek.com/gensim/auto_exa

mples/index.html

BioVec [61] Asgari et al. 2015 A new method designed for embedded

representation of biological sequences

http://dx.doi.org/10.7910/DVN/JMFHTN

dna2vec [62] Ng et al. 2017 A method to gain DNA k-mer embedded

representation

https://pnpnpn.github.io/dna2ve

c/

LSTM LSTM [15] Hochreiter et al. 1997 A special RNN network designed to solve

the long sequences

seq2seq [63] Sutskever et al. 2014 An encoder–decoder LSTM model for

outputting sequences with uncertain

length

https://github.com/google/seq2

seq

AWD-LSTM [64] Merity et al. 2018 A weight-decreasing LSTM that uses

DropConnect as a form of cyclic

regularization for hidden weights

https://github.com/salesforce/a

wd-lstm-lm

ELMo [16] Peters et al. 2018 A general method for learning

high-quality deep context-dependent

representations from bi-LM

http://allennlp.org/elmo

SeqVec [65] Heinzinger et al. 2019 A new method to represent protein

sequences as continuous vectors

https://github.com/mheinzinger/

SeqVec

UniRep [66] Alley et al. 2019 An mLSTM-encoded representation

method trained on 24 million protein

sequences

https://github.com/churchlab/UniRep

Transformer Transformer [17] Vaswani et al. 2017 Solve the sequence to sequence problem

and replace LSTM with a full attention

structure

https://github.com/tensorflow/

tensor2tensor/blob/master/tenso

r2tensor/models/transformer.py

Bert [18] Devlin et al. 2018 Bidirectional language model based on

Transformer

https://github.com/google-resea

rch/bert

Transformer-XL [67] Dai et al. 2019 A variant of Transformer to solve the

problem of long sequences

https://github.com/kimiyoung/transformer-

xl

XLNet [68] Yang et al. 2019 A generalized autoregressive pretraining

model

https://github.com/zihangdai/xlnet

RoBERTa [69] Liu et al. 2019 A Bert model with improved pretraining

procedure

https://github.com/pytorch/fai

rseq

ALBERT [70] Lan et al. 2019 A lite Bert model with parameter sharing

mechanism

https://github.com/google-

research/ALBERT.
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Figure 2. Four types of pretraining models for biological sequences. It introduces four popular pretraining models: CNN(a), LSTM(b), Word2vec(c) and Transformer(d).

field. Over the years, CNN has also become a frequently used

neural network model in other deep learning fields.

CNN is composed of three primary neural layers, namely,

the convolutional layer, pooling layer and fully connected layer

[71]. The simple architecture of CNN is shown in Figure 2(A). In

the convolutional layer, multiple convolution kernels perform

convolution operations on the input matrix and intermediate

feature maps and then transmit the result represented by the

feature matrix to the next layer for operation. The pooling layer

is used to reduce the featuremap dimensions and the number of

network parameters, thereby speeding up the network training.

The fully connected layer that is always located at the end can

convert the two-dimensional feature map into one-dimensional

feature vector, which reflects the results of tasks.

Recently, CNN has been applied in obtaining information

from biological sequences for corresponding tasks. Through pre-

training on other datasets and transferring to target datasets,

the CNN-basedmodel not only utilizes data characteristics from

different datasets but also achieves remarkable results on target

tasks with less training time.

Word2vec

Mikolov et al. [14] proposed word2vec in 2013, a well-known

unsupervised method to learn high-quality embedded vectors

to represent words. By designing two context word prediction

tasks, the word2vec model learns the low-dimensional embed-

ding representation of eachword,which reflects the context and

sematic information of words among sequences.

Word2vec comprises two important models: Skip-gram and

Continuous Bag of Words (CBOW). Figure 2(B) shows the archi-

tectures of Skip-gram and CBOW.The training object of the Skip-

gram model is predicting context words based on the target

word, in which the input is the target word, and the output is

the context words. Different from Skip-gram, the CBOW model

can predict the target word based on context words, which

changes the input as the surrounding context and output as

the target word. The embedded representation of words is the

low-dimensional vectors that are mapped by the hidden layer,

which is the by-product of Skip-gram and CBOW. In particular,

the Skip-gram model is described as follows:

h = Wxk (1)

(

y1, y2, . . . , yn
)

= W′h (2)

where xk is the input representing the target word; (y1, y2, . . . , yn)

is the output representing the context words; and h denotes

the hidden representation withW andW′ representing different

weights. The CBOW model is introduced as follows:

h = AVG (W (x1 + x2 + · · · + xk)) (3)

yk = W′h (4)

where x1, x2, . . . , xn is the input representing the context words;

yk is the output representing the target words; and h, W and

W′ denote the hidden representation and weight. In addition,

two training strategies in word2vec are proposed for reduc-

ing computational cost and speeding up training time, namely,

Hierarchical Softmax and Negative Sampling.

For tasks based on biological sequences,pretrainingword2vec-

based models can capture syntax and semantic information

among biological sequences. After pretraining on large unla-

beled biological sequence datasets, word2vec-based models

generate high-quality embedding vectors to represent biological

sequences,which significantly improve performance after being

used in downstream tasks.
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Long short-term memory

LSTM [15] is an improved RNN model, which obtains not only

information from single input but also contextual information

from other input, having advantages in processing long

sequences. The LSTM model can extract the semantic and

grammatical information in the sequences with mapping

sequences into low-dimensional vector space.

Figure 2(C) illustrates the internal structure of LSTM. Com-

pared with RNN, LSTM establishes more delivery states (hidden

state and cell state) to transport information, which addresses

the gradient explosion and disappearance problem in training

long sequences. Structurally, the input of the current unit and

states, which are passed from previous units, jointly control the

current output and states. The specific process can be described

as follows: suppose xt is the input of LSTM unit t, and ht−1 is the

hidden state passed from previous units, the input information

and three function gates can be obtained as follows:

z = tanh
(

W′contact
(

xt,ht−1

))

(5)

zi = σ

(

Wicontact
(

xt,ht−1

)

)

(6)

zf = σ

(

Wfcontact
(

xt,ht−1

)

)

(7)

zo = σ
(

W0contact
(

xt,ht−1

))

(8)

where W′,Wi,Wf andW0 represent different weights;

σ denotessigmoid function and z denotes input information.

Three function gates are identified: input gate (zi) controls the

information needed to be retained; forget gate (zf ) controls

the information that should be forgotten and output gate

(zo) controls the information that will be outputted. Next,

supposect−1 is the cell state passed from previous units, the

current output and states are obtained as follows:

ct = zf ∗ ct−1 + zi ∗ z (9)

ht = zo ∗ tanh (ct) (10)

yt = σ
(

Wht
)

(11)

where ct and ht denote the cell state and hidden state of LSTM

unit t, respectively, which will be passed to the next unit.yt
represents the current output, which can be used for tasks. ∗

denotes the matrix Hadamard product.

A widely used variant of LSTM is bidirectional long short-

termmemory (Bi-LSTM), which obtains semantic information in

two directions from long sequences. Bi-LSTM performs better in

languagemodelingwhile extracting comprehensive information

from sequences on the basis of LSTM.

The LSTMmodel gains success in processing long sequences.

However, the training strategy and model structure limit the

embedding representation of words generated by LSTM, which

cannot represent polysemous words in different context. To

overcome abovementioned shortcomings, Peters et al. [16] pro-

posed an embedding model based on deep bidirectional lan-

guage model (Bi-LM), named ELMO, to generate embedding vec-

tors for representing corresponding words according to contex-

tual information. The architecture of the language model in

ELMO is presented in Figure 3(A). After embedding, the input

sequences are encoded by the Bi-LSTM layers. The output of

each LSTM layer is used as the context-dependent word vec-

tors of each word. The final word vectors are generated by

linearly combining word vectors of different layers, which rep-

resent specific meaning of words in specific context. Differ-

ent from taking words as input in previous models, the input

of ELMO is a sentence. Therefore, ELMO dynamically gener-

ates the word vectors on the basis of the context in sentences

instead of generating fixed word vectors for words in different

sequences.

The LSTM-based model has evident advantages in dealing

with long sequences. Thus, it is always used for embedding long

biological sequences into low-dimensional vectors as pretrain-

ing models.

Transformer

Inspired by remarkable performance of attention mechanism

[72] in many fields, the Transformer model is proposed on the

basis of attention mechanism in the NLP field. Instead of using

traditional CNN and RNN models, Vaswani et al. [17] creatively

proposed Transformer, which is a full attention mechanism

network. The architecture of the attention layer leads to the

parallelism and long-term dependence of the Transformer

model.

Figure 2(D) shows the initial structure of Transformer.

The Transformer model has a typical encoder–decoder archi-

tecture, which is composed of multihead self-attention and

feedforward neural network (FNN). In Transformer, sequences

are first represented by low-dimensional vectors after word

embedding and positional embedding. In encoder, embedding

vectors are encoded through N-EncoderLayer, which has a

multihead self-attention layer and FNN layer in each layer.

In decoder, vectors are decoded through N-DecoderLayer that

adds a masked multihead self-attention layer compared with

EncoderLayer.

In particular, themultihead self-attention in Transformer can

be described using the following equations. Suppose X is the

input, the three vectors for calculating attention are as follows:

Q = WQX (12)

K = WKX (13)

V = WVX (14)

whereQ,K andV represent the query vector, key vector and value

vector, respectively; WQ ,WK and WV are the different weights to

calculate different vectors. In addition, suppose Atti is the i-head

attention, output A can be obtained as follows:

Atti = Attention (Qi,Ki,Vi) = σ

(

QiKi
T

√

dk

)

Vi (15)

A = Wcontact (Att1,Att2, . . . ,Atti) (16)

where dk represents the dimension number in Q; σdenotes the

sigmoid function and W denotes the weight.

In recent years, Devlin et al. [18] proposed a breakthrough

multitask pretraining model on the basis of Transformer, Bidi-

rectional Encoder Representations from Transformers (Bert), to

learn high-quality vector representation of words. The structure

of Bert is presented in Figure 3(B). The Bert model is made

up of Bidirectional Transformer (Bi-Transformer) blocks; thus,

representation generated by Bert is based on context informa-

tion of all layers. Compared with previous embedding methods,

Bi-Transformer in Bert can capture bidirectional information
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Figure 3. ELMO and Bert architecture. It introduces two popular pretraining models: ELMO(a) and Bert(b).

among the sequences more thoroughly. The pretrained task

in Bert is Masked Language Model (MLM) and Next Sentence

Prediction (NSP), which are used for obtaining embedding rep-

resentation of words in self-supervised learning. Consequently,

multitasks enable Bert to learn sequence information in differ-

ent views.The Bertmodel pretrained on large corpus can provide

other methods with outstanding embedding representation of

words, which improve model performance and reduce training

time. In addition, pretrained Bert can be applied in various tasks

after fine-tuning according to special tasks, thereby obtaining

excellent results.

The full attention mechanism structure enables the Trans-

former-based models to generate embedding vectors accord-

ing to the importance of context information, which repre-

sent the members in biological sequences. After training on

magnanimous unlabeled biological sequences, the pretraining

Transformer-based model can provide embedding representa-

tion with rich features of biological sequences, which are ben-

eficial to downstream tasks.

Application of pretraining model

In general, most of the pretraining models for biological

sequence data are used for sequence-embedded representation

because of the difficulty in obtaining labeled data. Given the

sequence w1,w2, · · · ,wK, where each token (wk) represents a

word, the embedding process can be described as follows:

[V1,V2, · · · ,VK] = femb (w1,w2, · · · ,wK) (17)

where femb represents the pretrained embedding models and

VK is an embedded low-dimensional vector for representing

wK. Embedded representation can extract features of biological

sequences and express such features in another form of vectors.

In addition, the featurematrix of biological sequences that is cre-

ated by embedded representation improves the generalization

ability of the models, thereby speeding up the training process

and achieving remarkable final output.

Table 3 lists some recent studies that used pretrainingmodels

for embedded representation to improve the performance of

downstream tasks. In this section, we review some proposed

pretraining models for biological sequence data and their appli-

cation on downstream tasks. Concurrently, we summarize these

methods on the basis of the type of pretraining models: CNN,

word2Vec, LSTM and Transformer.

Methods based on CNN

Previously, CNN was often used in CV to deal with image infor-

mation. Recently, some studies [22, 73] have used CNN to pre-

train biological sequence in transfer learning. Zhuang et al. [73]

proposed a simple CNN model on the basis of DNA sequences

to predict EPI. The simple model contains two input channels

for enhancer and promoter sequences, followed by a convolu-

tion layer to encode sequences and a max-pool layer in each

sequence. After matrix operations, a fully connected layer con-

nects two results and finally outputs the EPI probability after

dropout and sigmoid activation. The model is first pretrained

with DNA sequences from other cell lines, where feature infor-

mation was extracted from other sequences, and then trained

with DNA sequences from target cell lines for CPI prediction.

Playe et al. [22] designed a chemogenomic neural (CN) network, a

deep neural network model that takes the embedded represen-

tation of the protein sequences andmolecular graphs as input to

predict DTI. The embedded representation of protein sequences

is obtained by CNN encoder pretrained on DBEColi dataset from

DrugBank database, which performs better than Bi-LSTM in test.

As shown in the results, the CN model performs well in DTI

prediction on large datasets.

Methods based on Word2vec

In NLP field, some embedded methods [14, 60] are developed on

the basis of word2vec,which can be applied to embedded biolog-

ical sequences. Concurrently,manymethods [61, 62] particularly

designed for biological sequences are proposed in recent years.

Some studies [25, 54, 58, 75, 81] have employed word2vec-based

methods for embedded representation of biological sequences,

which are pretrained over large corpus and performed well on

downstream tasks.

Benefit by great performance of word2vec in embedded

representation, some methods [54, 58] select word2vec as a

pretrained model for biological sequences. Chen et al. [54]

proposed a novel method, namely, TransformerCPI for CPI

prediction, which is fed with protein sequences and compound

sequences. The model converts the protein sequences into a

real-value 100-dimensional vector by word2vec pretrained on

UniProt database, to extract features and represent protein

sequences. Chaabane et al. [58] used the Skip-gram model

(word2vec) to generate an embedded matrix of RNA sequences

for circular RNA classification. During embedding, word2vec

is first pretrained with RNA sequences and fine-tuned during

subsequent training.

Although word2vec performed well in representing words,

it still cannot avoid the order and semantics of words in
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Table 3. List of recent works employing pretraining models

Author Year Dataset Method Pretraining model Application Code

Based on CNN

Zhuang et al. [73] 2019 SPEID CNN CNN EPI https://github.com/zzUMN/Combine-CNN-Enhancer-

andPromoters

Playe et al. [22] 2020 DrugBank,

DBHuman, DBEColi

CN DTI https://github.com/bplaye/NNk_DT

Based on word2vec

Chen et al. [54] 2020 UniProt, DrugBank,

BindingDB, GPCR,

Kinase

TransformerCPI word2vec CPI https://github.com/lifanchen-simm/transformerCPI

Chaabane et al. [58] 2020 circRNADb,

GENCODE

circDeep Circular RNA

classification

https://github.com/UofLBioinformatics/circDeep

Yang et al. [74] 2018 UniProt GP doc2vec Four tasks https://github.com/fhalab/embeddings_reproduction/.

Deznabi et al. [75] 2020 PhosphoSitePlus DeepKinZero ProtVec Kinase–phosphosite

associations

thttps://github.com/Tastanlab/DeepKinZero.

Hong et al. [25] 2020 TargetFinder (EPI) EPIVAN dna2vec EPI https://github.com/hzy95/EPIVAN.

Based on LSTM

Bepler et al. [53] 2019 SCOPe, Pfam SSA LSTM Protein structural

similarity

https://github.com/tbepler/protein-sequence-

embedding-iclr2019

Karimi et al. [76] 2019 Pfam, BindingDB,

UniRef, STITCH

DeepAffinity seq2seq CPI https://github.com/Shen-Lab/DeepAffinity

Strodthoff et al. [26] 2020 SWISS-PROT, DEEPre,

ECPre, EC40, EC50

UDSMProt AWD-LSTM Protein

classification

https://github.com/nstrodt/UDSMProt.

Amelia et al. [55] 2020 PDB, SWISS-PROT,

CAFA3

Several methods SeqVec Protein function

prediction

https://github.com/stamakro/GCN-for-Structure-and-

Function.

Based on Transformer

Rives et al. [77] 2019 UniProt, UniParc,

CB5135926_filtered

Bert Bert Variant activity

prediction

Vig et al. [78] 2020 ProteinNet, TAPE Bert Bert Interpretability https://github.com/salesforce/provis

Nambiar et al. [79] 2020 SWISS-PROT, HIPPIE PRoBERTa RoBERTa PFC PPI

Elnaggar et al. [80] 2020 UniRef100, BFD ProtTrans Bert,

Transformer-XL

XLNet, ALBERT

HPC in protein LMs https://github.com/agemagician/ProtTrans
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sentences. Mikolov et al. [60] proposed doc2vec, an improved

unsupervised embedding method for sequences with variable

length to address the challenges of word2vec. Yang et al. [74]

used pretrained doc2vec to embed protein sequences into

64-dimensional space, which is first trained on unlabeled

protein sequences from UniProt. The experimental results

show that the embedded representation of protein sequences

performs well for predicting protein property.

Word2vec makes great contributions to the embedded

representation of biological sequences as a pretrained model.

Consequently, some word2vec-based methods [61, 62] designed

particularly for embedding biological sequences have been pro-

posed in recent years. Asgari et al. [61] proposed Bio2vec, which

is an embedded method particularly for biological sequences.

Bio2vec can generate continuously distributed representation

of biological sequences using a pretrained Skip-gram model,

which is divided into Protvec (for protein) and Genvec (for

gene) according to different training objects. Deznabi et al. [75]

applied Protvec that trained protein sequences from SWISS-

PROT to embed phosphosite into 1300-dimensional vector,

which provides embedded representations of phosphosite for

kinase–phosphosite association prediction.Ng et al. [62] obtained

DNA k-mer-embedded representation by word2vec trained with

human DNA sequences, which is called dna2vec. Hong et al. [25]

proposed a novel method called EPIVAN to predict EPI with only

genomic sequences. For representing enhancer and promoter,

EPIVAN used the DNA vectors generated by pretrained dna2vec

to encode DNA sequences.

Methods based on LSTM

Word2vec is an effective model in generating vectors represent-

ing words, but it only provides limited help for embedding long

sequences. Another effective neural network model for process-

ing sequence information is LSTM. Given its advantages, many

LSTM-based embedding methods [15, 16, 63–66] are proposed

and used for representing biological sequences as pretrained

models in some methods [26, 53, 55, 76].

Bepler et al. [53] proposed SSA frame, which predicts protein

structural similarity from amino acid sequences. Their proposed

method maps protein sequences to embed vectors by Bi-LSTM

models pretrained on protein sequences in Pfam. Sutskever et al.

[63] proposed seq2seq, an encoder–decoder LSTM model that

used attention mechanism to output sequences with uncer-

tain length. In seq2seq, sequences are first embedded into vec-

tors with fixed length by an LSTM model and then converted

into ideal sequences by another LSTM model. Karimi et al. [76]

designed a semisupervised deep learning model, which predicts

compound–protein affinity with unlabeled and labeled data,

namely, DeepAffinity. For leveraging rich information from com-

pound and protein, they used a seq2seq model pretrained on

unlabeled sequences to embed labeled sequences.

Merity et al. [64] regularized and optimized an LSTMmodel by

using DropConnect on hidden-to-hidden weights and presented

ASGD Weight-Dropped LSTM (AWD-LSTM), which performs bet-

ter in embedding sequences than LSTM. Strodthoff et al. [26]

proposed UDSMProt pretrained on unlabeled protein sequences,

which classified proteins from sequences.UDSMProt used AWD-

LSTM as a pretrained language model to understand the good

embedding of protein sequences,which also performswellwhen

transferring to other three tasks. Alley et al. [66] build unified

representation (UniRep) from massive unlabeled amino acid

sequences by a multi-LSTM model. As shown in their results,

the statistical representation of protein sequences contains rich

semantical information, which can be broadly applied to other

methods as pretrained embedded representation.

Due to the outstanding performance of EMLO [16] in

sequences processing, the pretraining ELMO model also

performed well in embedding biological sequences. Heinzinger

et al. [65] proposed Seq2Vec, a novel embedding model based on

ELMO pretrained on UniRef50, to represent protein sequences by

continuous vectors. This method can also be used as pretrained

model for embedding biological sequences in other methods.

Amelia et al. [55] used embedded representation of protein

sequences with additional protein contact map to predict

protein function, in which high-quality embedded vectors are

generated by LSTM-based SeqVec model pretrained on PDB

database.

Methods based on transformer

Although the LSTM-based methods have achieved good results

in embedding biological sequence as pretrainedmodels, they are

still limited in training long sequences. In recent years, many

models [17, 18, 67–70] based on Transformer have been proven to

performwell in embedded representation of biological sequence

as pretrained models, particularly after Bert proposed.

Rives et al. [77] trained Bert on 86 billion amino acids from 250

million sequences. In their experiment, raw protein sequences

aremapped into representation space reflecting biological struc-

ture at many levels. The representations offer various infor-

mation and feature of proteins, which can be extracted and

used by other methods according to downstream tasks. Vig

et al. [78] focused on interpretability of embedded representation

learned by Transformer architectures (Bert). Their results show

that attention mechanism can capture the folding structure

of proteins and target binding sites and focus on biophysical

properties.

Recent advances in Transformer-based methods made it

valid to embed biological sequence as high-quality vector

representation. Dai et al. [67] improved the Transformer model

in accepting variable length context in language modeling,

proposing Transformer-XL.With novel segment-level recurrence

mechanism and positional encoding scheme, Transformer-

XL performed well in capturing long-term dependency and

processing context fragmentation. Yang et al. [68] overcame

the limitations of MLM in Bert by replacing the autoregressive

model with autoencoding model simultaneously and designing

a novel generalized autoregressive pretraining method, namely,

XLNet. Given the two-stream self-attention mechanism and

integrating advantages of Transformer-XL, XLNet outperformed

Bert in various NLP tasks. Liu et al. [69] proposed an improved

Bert model-RoBERTa, which adjusted training details of Bert

and achieved dynamic masking mechanism. Lan et al. [70]

proposed ALBERT, a lite Bert with cross-layer parameter sharing

and factorized embedding parameterization, thereby speeding

up the training phase. For embedding protein sequences,

Nambiar et al. [79] designed PRoBERTa, a neural network

architecture based on RoBERTa. After pretraining on SWISS-

PROT database and fine-tuning, their method performs well in

protein family classification and protein interaction prediction.

Elnaggar et al. [80] combined Transformer-based models with

high-performance computing to map protein sequences as

embedding vectors, namely, ProtTrans. In their experiment,

researchers trained four models (Transformer-XL, XLNet, BERT

and Albert) on 93 billion amino acids from 2.1 billion protein

sequences. As shown in the results, Transformer-based models

pretrained on a large amount of labeled data extracted the
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biophysical information of proteins and achieved good results

in various downstream tasks.

Scheme and benchmark

In this section, we introduce a novel pretraining scheme for

protein sequences and a multitask benchmark for protein

embedding methods. Hopefully, pretraining scheme and protein

embedding benchmark can provide novices with a way, in which

researchers can quickly design methods for protein sequences

and evaluate the performance of protein embedding models.

Min et al. [82] proposed a novel pretrained scheme for pro-

tein sequences, namely, PLUS, in which embedding models are

pretrained with protein-specific pretraining task to obtain infor-

mation in unlabeled protein sequences. It reflects the difference

between protein sequences and natural language sequences.

PLUS contains two pretraining tasks (MLM and Same Family

Prediction), which obtain sequence information and protein-

specific information. In particular, protein sequences are first

masked 15% at random and then transformed to embedding

vectors by representation models with two pretraining tasks.

The transferability of PLUS enables various embedding models

for biological sequences to be pretrained and fine-tune on down-

stream tasks, such as Bi-LSTM and Transformer. With the help

of PLUS, researchers can focus on designing their pretraining

embedding methods regardless of auxiliary tasks and training

procedures.

Rao et al. [83] collected and designed a multitask standard

benchmark, Tasks Assessing Protein Embeddings (TAPE), to

make up the gaps in standardized evaluation indicators and

datasets for protein semisupervised learning. TAPE reflects

multiple functions of the protein sequences and evaluates

the pretraining models for protein sequence from multiple

aspects. TAPE consists of five semisupervised learning tasks

relevant to proteins (secondary structure prediction, contact

prediction, remote homology detection, fluorescence landscape

prediction and stability landscape prediction), which cover

three areas of protein biology: structure prediction, evolutionary

understanding and protein engineering. For datasets, TAPE

provides an unlabeled protein sequence dataset constructed

from Pfam database and many supervised preprocessed

datasets for downstream tasks. In addition, the experimental

results indicate that self-supervised pretraining models for

biological sequences can significantly improve the performance

on downstream tasks. These tasks and protein datasets in

TAPE can be used for evaluating the performance of protein

pretraining methods in multiaspects, which offers a fair and

open benchmark for measuring the effectiveness of pretraining

models.

Challenges and future directions

Pretraining models that are not related to specific tasks are

obtained by self-supervised learning on large-scale data. With

the emergence of pretraining models and their successful appli-

cations in fields such as NLP [84], CV depicts the power of pre-

training technology. Pretraining models are applicable to almost

all tasks that rely on large amounts of data, particularly unla-

beled data.

Regarding biological sequence data, pretraining models can

generate embedded representation that reflects the semantic

information of biological sequence after training on large cor-

pus, which speeds up training process, improves performance

on downstream tasks and supports new tasks with fine-tune.

However, despite the success of pretrainingmodels for biological

sequence in recent years, such models still face challenges and

need further development in this field. Herein, we summarize

challenges and potential future directions in pretraining models

for biological sequence.

Data

Pretrainingmodels for biological sequence require large amount

of data to learn sufficient features in sequences, but reliable

biological sequence data are not enough. Although high-

throughput sequencing technology has brought various new

sequence data [85, 86], it still cannot meet the developing

pretraining models, particularly DNA and RNA sequences. In

addition, the expensive cost of obtaining labeled data and

lack of negative samples hinder the transfer of pretraining

models for biological sequence in many tasks. On the one hand,

the breakthrough of sequencing technology in the biological

field may alleviate these problems. On the other hand, the

multimodal pretraining model is a good solution. Compared

with previousmethods,multimodal pretrainingmodels [87] fuse

abstract feature from different types of data such as sequence,

image and graph, which learn good feature representation from

multimodal data while making up for the lack of sequence data.

Therefore, multimodal pretraining models can make full use

of more data and perform better on downstream tasks. We

hypothesize that more multimodal pretraining methods are

proposed for biological sequence in the future.Meta-learning is a

novel learning strategy,which helps themodel learn information

quickly with a small number of samples. Themain idea inmeta-

learning ismakingmodels to learn based on previous experience

and knowledge. Combining meta-learning with pretraining

models for biological sequences would be a potential future

direction.

Pretraining tasks

Based on specific pretraining tasks, pretrainingmodels can learn

abundant feature representation on large datasets. A variety of

NLP pretrainingmodels [18, 69, 88] used LM orMLM as a pretrain-

ing task. Some NLP pretraining models [68, 70, 89–91] are also

transferred to biological sequences.However, tasks inNLP reflect

partial characteristics of biological sequences [82]. Simultane-

ously, a single task has limited effects on pretrainingmodels. For

the former, more tasks reflecting specific information in biolog-

ical sequences are proposed. In addition, a new future direction

is contrastive learning [92], learning the semantic information

from similarity and difference of sequence pairs. Recently,many

contrastive learning pretraining models [93–96] are proposed,

which also have a good prospect in biological sequence data. For

the latter, one improvement that can be made is using multitask

pretrainingmodels [97] instead of single pretrainingmodels. The

models in multitask learning are trained through a set of related

tasks, which improve the generalization ability of the models.

By taking the relation and difference between different tasks

into consideration, multitask pretraining models perform better

than single-task models. Multitask pretraining models become

increasingly popular,when single-taskmodels have been unable

to meet pretraining requirements gradually.

Pretraining models

Existing pretraining models for biological sequences are derived

from NLP domain. After the Transformer architecture came out,

Transformer-based pretraining models in NLP reached a new
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height and faced some new challenges. The most prominent

problem is too many parameters in Transformer models, which

requires expensive computing resources and long time to fit

the pretraining models. An interesting future direction is to

propose new architectures to overcome the disadvantages of

Transformer models. In recent years, some valid training strate-

gies are designed for compressing pretraining models, such as

model trimming [98], parameter sharing [70], etc. At present,

Knowledge Distillation (KD) [99] is a novel research direction in

reducing pretraining models. Two models are identified in KD:

student (small) model and teacher (large) model, in which the

student model is obtained through transferring knowledge from

a trained teacher model. KD has an ability to transfer a large

model to a smallmodel that retains the performance close to the

large model. In addition to model compression, new pretraining

model architecture and interpretability of pretraining models

are popular future directions. Knowledge graphs also have been

applied in the prediction of drug repurposing [100], disease genes

[101, 102], circular RNAs [103] miRNAs [104, 105]. It would be

interesting to study using knowledge graphs for the pretraining

of biological sequences.

Conclusion

In this paper, we provided a review that aimed to introduce

recent development and studies on pretraining models for bio-

logical sequence data. In general, we included in this review

the background of pretraining models for biological sequence, a

brief introduction to biological sequence data and correspond-

ing datasets, popular pretraining models in previous works,

application of pretraining models for biological sequences, a

novel scheme and benchmark on pretraining models for protein

sequences, and challenges and future directions.

In particular, we first illustrated the deep learning back-

ground of pretraining models for biological sequences, con-

taining the role of biological sequence data and introduction

of pretraining models. Then, we made a brief introduction of

biological sequences and several notable biological sequence

databases. We also collected and presented some datasets with

brief description and available link. Next, we proposed a clas-

sification scheme for pretraining models and reviewed the lit-

erature on the basis of the categories of pretraining models.

Moreover,we separately introduced the corresponding structure,

features and mechanisms of pretraining models. We further

detailed some methods for downstream tasks with proposed

pretraining models to explain the application of pretraining

models, such as DTI, EPI, PPI [106, 107], protein function pre-

diction [108–111] and RNA classification [112]. In addition, we

provided a novel pretraining scheme and benchmark for pro-

tein sequences, which helped researchers to design and verify

their methods. Finally, we discussed existing challenges and

popular future research directions of pretraining models for

biological sequence to guide future works. We hope that this

survey can provide readers with a general understanding toward

this field, some resources for conducting research and feasible

ideas for future research in pretraining models for biological

sequence data.

Key Points

• Summarize popular pretraining models for biological

sequences based on four categories: CNN, word2vec,

LSTM and transformer.

• Present some applications of pretraining models for

biological sequences on downstream tasks to explain

the role of pretraining models.
• Discuss the challenges and future research directions

in pretraining models for biological sequences.
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